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Lecture 12: Finite Elements

In finite element analysis, functions of continuous quantities such as temperature or displace-
ments, can be represented by piecewise approximations. Thus, a finite element representation
of a circle would be a circumscribed polygon, with each edge being a finite element. The
deflection of a mechanically heterogeneous structure as a function of force may be described
by dividing it into small elements, each of which can be approximated to be homogeneous.

In finite element stress analysis, the elastic body is first divided into discrete connected parts,
which are the finite elements. The points at which the elements are connected are the nodes.
The process of dividing the domain into elements is called discretisation and the pattern of
elements is the mesh. We then relate, using a stiffness matrix, the forces applied to the nodes
of a single element and the resultant nodal displacements. The final step is to combine together
all the stiffness matrices of the individual elements into a single large matrix which is the global

stiffness matrix. We shall now illustrate this process using linear elastic springs.

Single Spring

Assume that the force versus displacement relation is linear,

F = kδ

where k is the stiffness of the spring. The spring shown in Fig. 1a is fixed at one end and hence
at equilibrium can only have a displacement δ at the other node.

Fig. 1: (a) Single spring, fixed at one end. (b) Spring in a system of springs.

(c) System of two springs.



Spring in a System of Springs

Fig. 1b shows a system of springs, each of stiffness k but with a distribution of forces. For the
particular spring identified by the nodes 1 and 2 in that system of springs, there are the forces
F1 and F2 respectively. At equilibrium F1 + F2 = 0 or F2 = −F1. Since node 1 is displaced δ1

and node 2 a distance δ2, the net displacement is (δ2 − δ1) with

F2 = k(δ2 − δ1)

F1 = k(δ1 − δ2)

These equations can be written in matrix form as

f = kd
[

F1

F2

]

=

(
k −k

−k k

) [
δ1

δ2

]

System of Two Springs

Fig. 1c shows a system at equilibrium, consisting of a pair of springs, with different stiffnesses
k1 and k2. It follows that

F1 + F2 + F3 = 0

and that
F1 = k1(δ1 − δ2)

F3 = k2(δ3 − δ2)

so that
F2 = −k1δ1 + (k1 + k2)δ2 − k2δ3

which may be written as

F = KD




F1

F2

F3



 =





k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2









δ1

δ2

δ3





The overall stiffness matrix K can be derived from the individual stiffness matrices k
1

and k
2

but their orders are different so the latter two have to be expanded as follows:





F1

F2

0



 =





k1 −k1 0
−k1 k1 0
0 0 0









δ1

δ2

δ3









0
F2

F3



 =





0 0 0
0 k2 −k2

0 −k2 k2









δ1

δ2

δ3





with K =





k1 −k1 0
−k1 k1 0
0 0 0



 +





0 0 0
0 k2 −k2

0 −k2 k2







This simple case illustrates how the properties of the elements can be combined to yield an
overall response function.

Minimising the Potential Energy

For the set of springs illustrated in Fig. 2, we write

F1 = k1(δ1 − δ2)

0 = −k1(δ1 − δ2) + k2δ2 − k3(δ3 − δ2)

F3 = k3(δ3 − δ2)

Fig. 2: Another set of springs.

Expressed in matrix form, these equations become





F1

0
F3



 =





k1 −k1 0
−k1 k1 + k2 + k3 −k3

0 −k3 k3









δ1

δ2

δ3



 (1)

The same set of equations could have been derived by considering a minimisation of potential
energy Π. The total potential energy after loading is the sum of the strain energy and the
reduction of the potential energy of the applied forces during the nodal displacements:

Π = strain energy + work potential

=
1

2
k1(δ1 − δ2)

2 +
1

2
k2(δ2)

2 +
1

2
k3(δ3 − δ2)

2+

− F1δ1 − F3δ3

For equilibrium in a system with three degrees of freedom we need to minimise Π with respect
to δ1, δ2 and δ3:

∂Π

∂δ1

= k1(δ1 − δ2) − F1 = 0

∂Π

∂δ2

= −k1(δ1 − δ2) + k2δ2 − k3(δ3 − δ2) = 0

∂Π

∂δ3

= k3(δ3 − δ2) − F3 = 0

This result is identical to the one obtained before (equation 1); the potential energy minimi-
sation approach is simpler for large and complex problems.



For the set of springs illustrated in Fig. 3, we write

F1 = k1(δ1 − δ2)

0 = −k1(δ1 − δ2) + k2δ2 − k3(δ3 − δ2)

F3 = k3(δ3 − δ2) + k4δ3





F1

0
F3



 =





k1 −k1 0
−k1 k1 + k2 + k3 −k3

0 −k3 k4









δ1

δ2

δ3





Fig. 3: Another set of springs.

The same set of equations could have been derived by considering a minimisation of potential
energy Π:

Π = strain energy + work potential

=
1

2
k1(δ1 − δ2)

2 +
1

2
k2(δ2)

2 +
1

2
k3(δ3 − δ2)

2 +
1

2
k4(−δ3)

2

− F1δ1 − F3δ3

For equilibrium in a system with three degrees of freedom we need to minimise Π with respect
to δ1, δ2 and δ3:

∂Π

∂δ1

= k1(δ1 − δ2) − F1 = 0

∂Π

∂δ2

= −k1(δ1 − δ2) + k2δ2 − k3(δ3 − δ2) = 0

∂Π

∂δ3

= k3(δ3 − δ2) + k4δ3 − F3 = 0

This result is identical to the one obtained before; the potential energy minimisation approach
is simpler for large and complex problems.



Steady–state heat flow through an insulated rod

Fig. 4: One–dimensional heat flow through an insulated rod of cross–sectional

area A and length L. The finite element representation consists of two nodes

i and j.

Heat flow in one–dimension is described by Fourier’s law, in which

Q = −αA
dT

dx

where Q is the heat flow per second through a cross–sectional area A, T is temperature, x

is the coordinate along which heat flows and α is the thermal conductivity of the material in
which the heat flows.

Consider heat flow through the insulated rod illustrated in Fig. 4. The heat flux entering the
rod is Q1 (defined to be positive) and that leaving the rod is Q2. The temperatures T1 and T2

are maintained constant. The finite element representation consists of a single element with
two nodes 1 and 2 located at x1 and x2 respectively. We shall assume that the temperature
gradient between these nodes is uniform:

dT

dx
=

T2 − T1

x2 − x1

=
T2 − T1

L
and Q1 = −αA

T2 − T1

L

For steady–state heat flow,
Q1 + Q2 = 0

so that Q2 = −αA
T1 − T2

L

These two equations can be represented in matrix form as:

Q = kT
[

Q1

Q2

]

= −

αA

L

(
−1 1
1 −1

)

︸ ︷︷ ︸

k

[
T1

T2

]

(2)

where k is the thermal equivalent of the stiffness matrix.

Notice that Q1, the heat flux entering the element, is, according to our convention, positive
since T1 > T2 whereas Q2, that leaving the element is negative.
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