
Introduction

Creep resistant ferritic steels based on Fe–2·25Cr–1Mo and
Fe–(9–12)Cr have been used extensively in the energy and
petrochemical industries for more than half a century. This
is because they have an outstanding record of reliability in
quite aggressive conditions over time periods as long as
30 years. The alloys have undergone progressive develop-
ment throughout their history,1,2 particularly in order to
permit the use of higher steam temperatures in power plant
which can then operate with greater efficiency.

The basic principles of alloy design for creep resistance
are therefore well established and well founded on experi-
ence. The steels must have a stable microstructure which
contains fine alloy carbides which resist the motion of
dislocations; however, changes are inevitable over the long
service time so that there must be sufficient solid solution
strengthening to ensure long term creep deformation.
There may be other requirements such as weldability, and
corrosion and oxidation resistance. It is nevertheless diff-
icult to express the design process quantitatively given the
large number of interacting variables. It was the purpose
of the present work to encrypt some of the published
experimental data into a quantitative procedure for estimat-
ing the creep rupture stress of power plant steels as a
function of the chemical composition, heat treatment,
temperature, and time. The rupture stress is chosen as the
variable to model because of the ready availability of data
in the open literature, and because it is a very common
parameter used in industry during alloy development. The
model which is developed is then tested against known
metallurgical trends and used to propose two new alloys
which ought to have better properties than anything
developed to date. We begin with a brief description of the
neural network method used to develop the quantitative
model. The method used here is due to MacKay;3–6 and it
has been recently reviewed.7

Analysis technique

In regression analysis, data are best fitted to a specified
relationship which is usually linear. The result is an
equation in which each of the inputs xj is multiplied by a
weight wj . The sum of all such products and a constant h
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then gives an estimate of the output

y= ∑
j

wjxj+h . . . . . . . . . . . . . (1)

It is well understood that there are dangers in using such
relationships beyond the range of fitted data.

A neural network is a much more general method of
regression analysis. As before, the input data xj are
multiplied by weights, but the sum of all these products
forms the argument of a hyperbolic tangent. The output y
is therefore a non-linear function of xj , the function usually
chosen being the hyperbolic tangent because of its flexi-
bility.3–7 The exact shape of the hyperbolic tangent can be
varied by altering the weights (Fig. 1a). Further degrees of
non-linearity can be introduced by combining several of
these hyperbolic tangents (Fig. 1b), so that the neural
network method is able to capture almost arbitrarily
non-linear relationships. It is well known that the effect of
chromium on the microstructure of steels is quite different
at large concentrations than in dilute alloys.8 Ordinary
regression analysis cannot cope with such changes in the
form of relationships.

A neural network is ‘trained’ on a set of examples
of input and output data. The outcome of the training is
a set of coefficients (weights) and a specification of the
functions which in combination with the weights relate the
input to the output. The training process involves a search
for the optimum non-linear relationship between the input
and the output data and is computer intensive. Once the
network is trained, estimation of the outputs for any given
inputs is very rapid.

One of the difficulties with blind data modelling is that
of ‘overfitting’, in which spurious details and noise in the
training data are overfitted by the model (Fig. 2). This
gives rise to solutions that generalise poorly. MacKay7 has
developed a Bayesian framework for neural networks in
which the appropriate model complexity is inferred from
the data.

The Bayesian framework for neural networks has two
further advantages. First, the significance of the input
variables is automatically quantified. Consequently the
significance perceived by the model of each input variable
can be compared against metallurgical theory, where such
theory is known. Second, the network’s predictions are
accompanied by error bars which depend on the specific
position in input space. These quantify the model’s certainty
about its predictions.
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Table 1 Some variables included in the data set

Standard
Variable Range Mean deviation

Log (creep rupture time) −0·22 to 5·28 3·021 1·009
Test temperature, K 723–977 866·6 61·6
Normalising temperature, K 1123–1453 1279 70·42

Duration, h 0·17–33 2·007 3·85
Tempering temperature, K 823–1133 980 71·8

Duration, h 0·5–32 3·34 5·88
Annealing temperature, K 0–1023 230·7 404·3

Duration, h 0·5–50 3·96 8·15
Chemical composition, wt-%

C 0·004–0·23 0·112 0·044
Si 0·01–0·86 0·29 0·17
Mn 0·27–0·92 0·51 0·11
P 0·001–0·029 0·013 0·0076
S 0·001–0·02 0·0076 0·0047
Cr 2·17–12·9 8·43 3·28
Mo 0·04–2·99 0·89 0·513
W 0·01–3·93 0·41 0·749
Ni 0·01–2·0 0·24 0·28
Cu 0·01–0·87 0·074 0·102
V 0·01–0·28 0·119 0·1
Nb 0·005–0·312 0·036 0·047
N 0·001–0·165 0·031 0·0273
Al 0·001–0·057 0·012 0·012
B 0·0003–0·051 0·001 0·004
Co 0·008–2·5 0·092 0·334
Ta 0·0003–0·1 0·0008 0·0069
O 0·003–0·035 0·0104 0·0026
Re 0·0003–0·6 0·0032 0·0416

1 a three different hyperbolic tangent functions –
‘strength’ of each depends on the weights, and b
combination of two hyperbolic tangents to produce
more complex model

Database

The database compiled from the published literature9–36
consisted of 2066 combinations of creep rupture stress and,
originally, 30 inputs including the time to rupture, chemical
composition, and heat treatment (Table 1). It is emphasised
that the data set consisted mainly of Fe–2·25Cr–1Mo
(referred to generally in this paper as 2·25Cr–1Mo type
steel) and Fe–(9–12)Cr type steels because these have been
extensively reported in the literature. Many of the steels
were given three different heat treatments, described as
normalising, tempering, and annealing, and given in that
sequence. Each heat treatment can be described with three
variables: the temperature, duration, and the cooling rate
from the treatment temperature. There are four descriptions
of this cooling rate: furnace, air, or oil or water quenching.
Each of these was represented as a single variable with a
value 0 or 1, the latter if the treatment was applied. Four
variables are therefore needed to represent the cooling rate,
for example with values 0, 1, 0, 0 for air cooling. In some
cases the steel had only two heat treatments in which case
the third temperature, duration, and cooling rate columns
were all set to zero. The time to rupture was expressed in
logarithmic form since the rupture stress in creep theory
varies with the logarithm of time. The rupture stress was
modelled as a function of all the other variables including
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2 Complex model shown may fit data, but in this
instance a linear relationship may be all that is
justified by noise in data

3 Typical network used in the analysis: connections
originating from only one input unit are illustrated
and two bias units are not illustrated

time because it always has finite values whereas the time
can become infinitely large as the stress decreases. A well
behaved function is necessary for the neural network
analysis.7

Analysis

The aim of the present work was to predict creep rupture
stress as a function of the variables listed in Table 1. Both
the input and output variables were first normalised within
the range ±0·5 as follows

xN=
x−xmin

xmax−xmin
−0·5 . . . . . . . . . . (2)

where xN is the normalised value of x which has maximum
and minimum values given by xmax and xmin respectively.
The normalisation is not in principle necessary but does
permit the variables to be compared more readily.

The network consisted of 37 input nodes (one for each
variable), a number of hidden nodes, and an output node
representing the rupture stress (Fig. 3). The hidden nodes
are where the mathematical operations described below are
carried out. A larger number of hidden nodes represents a
more complex model. The network was trained using a
randomly chosen 1033 of the examples from a total of 2066
available, the remaining 1033 examples being used as ‘new’
experiments to test the trained network.

Linear functions of the inputs xj are operated on by a
hyperbolic tangent transfer function

hi=tanhA∑
j

w(1)ij xj+h (1)i B . . . . . . . . . (3)

so that each input contributes to every hidden unit. The
bias is designated hi and is analogous to the constant that
appears in linear regression (e.g. equation (1)). The strength
of the transfer function is in each case determined by the
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n

4 a variation in s
n

(the model perceived level of noise in
the data) as function of number of hidden units:
several values are presented for each set of hidden
units because the training for each network was
started with a variety of random seeds; b test error
as function of number of hidden units; c test error as
function of number of models in the committee
of models

weight wij . The transfer to the output y is linear

y=∑
i

w(2)ij hi+h (2) . . . . . . . . . . . . (4)

The specification of the network structure, together with
the set of weights, is a complete description of the form-
ula relating the inputs to the output. The weights are
determined by training the network; the details are des-
cribed elsewhere.7 The training involves a minimisation of
the regularised sum of squared errors. The term s

n
used

below is the framework estimate of the noise level of
the data.

The complexity of the model is controlled by the number
of hidden units (Fig. 3), and the values of the 39
regularisation constants sw , one associated with each
of the 37 inputs, one for biases, and one for all weights
connected to the output.

The results of the training are presented in Fig. 4a which
shows the model perceived noise s

n
in the training data

as a function of the complexity of the model. This nat-
urally decreases as the model becomes more flexible with
increasing complexity but as discussed earlier, an over
complex model may not be justified. To select the correct
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5 Plots of estimated v. measured creep rupture strength

for the best single model and best committee of
models

complexity it is necessary to examine how the model
generalises on previously unseen data in the test data set
using the test error. The latter is defined as

Ten=0·5 ∑
n

(yn−tn)2 . . . . . . . . . . . (5)

where yn is the set of predictions made by the model, and
tn the corresponding target (experimental ) values previously
unseen by the model. Figure 4b shows that the test error
at first decreases but then begins to increase again as a
function of the number of hidden units.

MacKay7 has suggested that the mean prediction of a
committee of the best models from the set illustrated in
Fig. 4b can give more reliable results than the very best
single model. This can be attempted by first ranking all the
models in order of worsening test error and then forming
a committee with the N top models where N=1, 2, . . . .
The test error for each committee can be evaluated in order
to select its optimum size. The committee test error is
shown as a function of the size of its membership in Fig. 4c
where it is seen that the four best models form a committee
which gives better estimates than the single best model.

Having chosen this committee, its four members were
retrained on all the available data (test and training), in
each case beginning with the weights obtained with just
the training data. The retrained committee was used for
all further work. Figure 5 shows a comparison between
the predictions of the single best model and that of the
committee after retraining each model on the entire data
set. Consistent with the reduction in the test error illustrated
in Fig. 4c, it is evident that the committee model outper-
forms the single best model.

Trends

It is useful to study the behaviour of the model for the
two classic steels designated 2·25Cr–1Mo and 10CrMoW.
The 2·25Cr–1Mo steel is a well established bainitic steel
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6 Calculated rupture strength as function of time at a
variety of test temperatures: detailed compositions of
the two steels are given in Table 2; the bands around
each curve represent ±1s error bounds

designed for a maximum operating temperature of 565°C
in power plant whereas the 10CrMoW steel is a more
recent martensitic steel for use at higher temperatures. The
typical set of inputs for these alloys is listed in Table 2.
Although the calculations to be presented here are based
on the neural network model, that model is not used in
isolation when developing new alloys, as seen in the next
section. The neural network modelling is supplemented
with thermodynamic calculations to ensure the ability of
the steel to become fully austenitic, and kinetic theory
which estimates the evolution of carbides and Laves phases.

Figure 6 shows calculated curves of the stress rupture
stress as a function of time at 550, 600, and 650°C.
The model correctly reflects the better creep resistance of
the 10CrMoW alloy at all temperatures. Modern design
requires that the steel should be able to support a stress of
100 MPa at 100 000 h. This is achieved by the 10CrMoW
steel at 600°C though neither would be adequate at the
higher temperature of 650°C. Another feature of Fig. 6 is
that the error bars for the 2·25Cr–1Mo steel are much
smaller than for the 10CrMoW. This is because of the
greater quantity of 2·25Cr–1Mo measurements in the data
set since the steel has been used for nearly 60 years. Also
it can be seen that the error bars get larger at long rupture
times where the data are also sparse for both steels. The
illustrations following Fig. 6 focus on the 10CrMoW steel
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7 Calculated rupture strength for 104 h at indicated
temperatures as function of a cobalt concentration;
b nickel concentration; and c aluminium concentration
in 10CrMoW steel: parameters are listed in Table 2;
bands around each curve represent ±1s error bounds

which is more interesting from the point of view of the
design of new alloys. Although changes in each of the input
variables have been examined, only those trends which are
significant are presented here.

Cobalt provides solid solution strengthening so the
trend illustrated in Fig. 7 is reasonable. Cobalt is some-
times added in order to reduce the delta ferrite in the 10Cr
type steels. However, phase diagram calculations using
MTDATA37 have shown that the steel becomes fully
austenitic beyond about 1200 K. The effect of cobalt in
those alloys where delta ferrite does form may therefore be
larger since the ferrite is a soft phase compared with
tempered martensite. The calculations for nickel are pres-
ented for the lower temperature of 550°C because those
for 600°C had very large error bars making the trend
unrecognisable (presumably because of a lack of data in
that region of input space or because the data available
are noisy). The deterioration in the rupture strength with
increasing nickel concentration is well known although
the metallurgical explanation is as yet missing. Strang and
Vodarek38 have suggested that the nickel stabilises the
M6X precipitates which coarsen rapidly and become in-
effective as impediments to dislocation motion. Aluminium
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Table 2 The standard set of input parameters for two
alloys used to examine trends predicted by the
neural network

Parameter 2·25Cr–1Mo 10CrMoW

Normalising temperature, K 1203 1338
Duration, h 6 2
Cooling rate WQ* AC*

Tempering temperature, K 908 1043
Duration, h 6 4
Cooling rate AC* AC*

Annealing temperature, K 873 1013
Duration, h 2 4
Cooling rate AC* AC*

Chemical composition, wt-%
C 0·15 0·12
Si 0·21 0·05
Mn 0·53 0·64
P 0·012 0·016
S 0·012 0·001
Cr 2·4 10·61
Mo 1·01 0·44
W 0·01 1·87
Ni 0·14 0·32
Cu 0·16 0·86
V 0·01 0·21
Nb 0·005 0·01
N 0·0108 0·064
Al 0·018 0·022
B 0·0003 0·0022
Co 0·05 0·015
Ta 0·0003 0·0003
O 0·01 0·01
Re 0·0003 0·0003

* WQ water quenched, AC air cooled.

Table 3 Input parameters for the 10CrMoW steel and
predicted design parameters for steels A and B

Parameter 10CrMoW Steel A Steel B

Normalising temperature, K 1338 1473 1453
Duration, h 2 2 2
Cooling rate AC* AC* AC*

Tempering temperature, K 1043 1073 1073
Duration, h 4 4 4
Cooling rate AC* AC* AC*

Annealing temperature, K 1013 1013 1013
Duration, h 4 4 4
Cooling rate AC* AC* AC*

Chemical composition, wt-%
C 0·12 0·12 0·13
Si 0·05 0 0
Mn 0·64 0·48 0·5
P 0·016 0·0016 0·0016
S 0·001 0·001 0·001
Cr 10·61 9 8·7
Mo 0·44 0·75 0·3
W 1·87 3 3
Ni 0·32 0 0
Cu 0·86 0 0
V 0·21 0·21 0·21
Nb 0·01 0·01 0·01
N 0·064 0·064 0·064
Al 0·022 0 0
B 0·0022 0·008 0·008
Co 0·015 1·25 0
Ta 0·0003 0·0003 0·0003
O 0·01 0·01 0·01
Re 0·0003 0·0003 0·0003

* AC air cooled.

Tungsten, wt.%

(a)

Tungsten, wt.%
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8 Calculated creep rupture strength for 10CrMoW steel
showing combined effect of tungsten and copper, and
of normalising temperature for treatment time of 2 h:
bands around each curve represent ±1s error bounds

is detrimental in the 10CrMoW steel because it getters
nitrogen in the form of coarse AlN, thereby reducing the
precipitation of VN and NbN which are important in
resisting creep deformation.39

Tungsten is known for its propensity to form Laves
phase after very long times at high temperature. This is
usually regarded as an undesirable phase because its
nucleation rate is so small that the few particles that do
form are coarse and hence of little use from the point of
view of strength. The precipitation of Laves phase also
leads to decrease in solid solution strengthening by reducing
the amount of tungsten in solid solution.40,41 Long term
stress rupture calculations are presented in Fig. 8a for the
10CrMoW steel which also happens to contain a significant
concentration of copper (0·86 wt-%, Table 2). It is seen
that there may be a slight deterioration in the 200 000 h
stress rupture strength at 600°C. Copper is known to
promote the nucleation of Laves phase.42 Calculations for
the same alloy and identical circumstances but with the
copper removed are illustrated in Fig. 8b. The strength now
increases with the tungsten content presumably because
the nucleation of Laves phase becomes more difficult.

The effect of the normalising temperature is illustrated
in Fig. 8c; the improvement in the stress rupture strength
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is consistent with an increasing dissolution of precipitate
phases as the temperature is raised. The accompanying
increase in the austenite grain size is known to be beneficial
since creep damage is usually focused at these grain
boundaries.43 Note that the narrow range of normalising
temperatures over which the model has a high confidence
is a reflection of the range of data available for steels of
this class.

It has been demonstrated that wherever significant trends
are observed, they can be shown to be consistent with



what is expected from physical metallurgy. However, it is
emphasised that the neural network method was used in
the first place because of the complexity of the problem.
The number of variables is large and there are interactions
between the variables. It is not possible to visualise these
multidimensional interactions and so it is unlikely that the
model can ever be tested completely.

Proposal for novel steels

The model is now used to propose some novel alloys with
stress rupture properties which are predicted to be better
than existing steels. The procedure involves a systematic
search of the input space focusing on directions which lead
to a maximisation of certainty, i.e. minimisation of error.
The detailed trends investigated are too voluminous to
report here but have been documented in an internal
report. The calculations involved the modification of the
standard 10CrMoW steel (Table 2) so all the results are
compared against that alloy. The first attempt led to the
design of alloy A (Table 3) but its long term properties at
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10 Calculated phase quantities for steel A, steel B, and
standard 10CrMoW alloy as functions of temperature:
phase quantities are moles of unit cells; austenite
has four atoms per unit cell whereas ferrite has two

650°C just fail to meet the 100 MPa requirement (Fig. 9).
Changes were therefore made to improve both the mean
long term properties and the certainty in their prediction,
by reducing the cobalt, chromium, and molybdenum
concentrations.

The new alloys do not contain any silicon, aluminium,
nickel, or copper, all of which were demonstrated earlier
to lead to a deterioration in the creep rupture stress. The
boron concentration is kept smaller than the maximum in
the database, primarily to reduce the uncertainty in the
predictions. There is an increase in the normalising temper-
ature, and reductions in the manganese and chromium
concentrations together with an increase in the level of
tungsten.

The neural network calculations were done in conjunc-
tion with phase diagram calculations using the MTDATA
program,37 and kinetic predictions using the methodology
described elsewhere.44–46 The phase diagram calculations
confirmed that there is a wide temperature range about the
proposed normalising temperature, over which only austen-
ite is the stable phase (Fig. 10). This is important in order
to avoid the retention of delta ferrite in the microstructure.
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Time, h Time, h

11 Calculated variation in fraction of precipitates as function of time and temperature for steel A, steel B, and
standard 10CrMoW steel: note that scale on 10CrMoW 650?C graph differs from the rest of the plots

Table 4 Calculated equilibrium mole fractions of phases

Temperature, °C

Steel Phase 600 650 700

10CrMoW M
23

C
6

0·0269 0·0269 0·0268
Laves 0·0113 0·0079 0·0024

Steel A M
23

C
6

0·0273 0·0273 0·0271
Laves 0·0264 0·0234 0·0188

Steel B M
23

C
6

0·0294 0·0294 0·0292
Laves 0·020 0·0165 0·0113

Table 4 shows the calculated equilibrium fractions of
M23C6 and Laves phase in each of the steels. Note that
other carbides including M2C, M6C, M7C3 , and M3C were
included in the calculations but were found to be metastable
relative to the equilibrium structure listed in Table 4. To
assess whether the steels are actually susceptible to Laves
phase formation requires kinetic calculations. There has

been progress recently in the calculation of precipitation
reactions in power plant steels on the basis of thermo-
dynamic data and kinetic theory.44–46

The calculations using this method are presented in
Fig. 11, which shows that Laves phase only occurs in the
10CrMoW steels at the very late stages of annealing at
650°C. Steels A and B were not found to exhibit Laves
phase precipitation, at least after 106 h at 600 or 650°C.
This is because they contain larger fractions of M2X pre-
cipitation, which reduces the driving force that is available
for the subsequent formation of Laves phase.

Finally, discussions with manufacturers and users of
power plant indicate that the proposed steels are realistic
from a manufacture and processing point of view. It is
interesting that we have drawn on a large published
database interpreted using a neural network, kinetic theory,
thermodynamic theory, and experience in order to reach
the proposed alloys. The actual predictions remain to
be tested.
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Conclusions

A neural network has been used to model the creep rup-
ture strength of bainitic and martensitic electric power
plant steels based on alloys in the composition range
Fe–2·25Cr–1Mo to Fe–(9–12)Cr, as a function of chemical
composition, heat treatment, and time at temperature. This
has been combined with thermodynamic and kinetic
calculations, together with metallurgical experience, to
propose two new alloys. These alloys should in theory have
excellent stress rupture properties, but the predictions
remain to be tested experimentally.
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