
Part IB Materials Science & Metallurgy H. K. D. H. Bhadeshia

Course A, Metals and Alloys

Lecture 1: Atomic Diffusion

Mass transport in a gas or liquid generally involves the flow of fluid

(e.g. convection currents) although atoms also diffuse. Solids on the

other hand, can support shear stresses and hence do not flow, except by

diffusion involving the jumping of atoms on a fixed network of sites.

Assume at first that such jumps can somehow be achieved in the solid

state, with a frequency ν with each jump over a distance λ.

For random jumps, the mean distance is

x = λ
√

n where n is the number of jumps

= λ
√

νt where t is the time

diffusion distance ∝
√

t

Although our discussion is focused on atoms, the principles of diffusion

apply also to other species such as ions and molecules.
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Diffusion in a Uniform Concentration Gradient

Consider adjacent planes in a crystalline solid, as illustrated in Fig. 1.

Fig. 1: Diffusion gradient in a crystalline solid. λ is

the shortest jump distance between adjacent planes.

The concentration of solute, C, has units of number of atoms per unit

volume (m−3). Each plane therefore has Cλ atoms per unit area (m−2)

so that the increment of composition on traversing a distance λ is

δC = λ

{
∂C

∂x

}
Given an atomic jump frequency ν and six equally probable jump di-

rections, it follows that the atom flux, J , atoms m−2 s−1 in the forward

(x) and reverse (−x) directions is:

JL→R =
1
6
νCλ

JR→L =
1
6
ν(C + δC)λ
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Therefore, the net flux in the forward direction becomes

J = JL→R − JR→L = −1
6
ν δC λ

= −1
6
ν λ2

{
∂C

∂x

}
≡ −D

{
∂C

∂x

}
This is Fick’s first law where the constant of proportionality is called the

diffusion coefficient in m2 s−1. Fick’s first law applies to steady state flux

in a uniform concentration gradient. Thus, our equation for the mean

diffusion distance can now be expressed in terms of the diffusivity as

x = λ
√

νt with D =
1
6
νλ2 giving x =

√
6Dt �

√
Dt

Non–Uniform Concentration Gradients

Suppose that the concentration gradient is not uniform (Fig. 2).

Fig. 2: Non–uniform concentration gradient
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Flux in = −D

{
∂C

∂x

}
1

Flux out = −D

{
∂C

∂x

}
2

= −D

[{
∂C

∂x

}
1

+ δx

{
∂2C

∂x2

}]
In the time interval δt, the concentration changes δC

δCδx = (Flux in – Flux out)δt

∂C

∂t
= D

∂2C

∂x2

assuming that the diffusivity is independent of the concentration. This

is Fick’s second law of diffusion.

This is amenable to numerical solutions for the general case but there

are a couple of interesting analytical solutions for particular boundary

conditions. For a case where a fixed quantity of solute is plated onto a

semi–infinite bar (Fig. 3),

boundary conditions:
∫ ∞

0

C{x, t}dx = B

and C{x, t = 0} = 0

C{x, t} =
B√
πDt

exp
{−x2

4Dt

}
Now imagine that we create the diffusion couple illustrated in Fig. 4,

by stacking an infinite set of thin sources on the end of one of the bars.

Diffusion can thus be treated by taking a whole set of the exponential

functions obtained above, each slightly displaced along the x axis, and

summing (integrating) up their individual effects. The integral is in fact

the error function

erf{x} =
2√
π

∫ x

0

exp{−u2}du
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Fig. 3: Exponential solution. Note how the curvature

changes with time.

so the solution to the diffusion equation is

boundary conditions: C{x = 0, t} = Cs

and C{x, t = 0} = C0

C{x, t} = Cs − (Cs − C0)erf
{

x

2
√

Dt

}

Fig. 4: The error function solution. Notice that the

“surface” concentration remains fixed.
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Interstitial                              Substitutional

This solution can be used in many circumstances where the surface

concentration is maintained constant, for example in the carburisation

or decarburisation processes (the concentration profiles would be the

same as in Fig. 4, but with only one half of the couple illustrated). The

solutions described here apply also to the diffusion of heat.

Mechanism of Diffusion

We have so far considered diffusion in a phenomenological manner, ne-

glecting the details of the atomic mechanisms. Atoms in the solid–state

migrate by jumping into vacancies (Fig. 5). The vacancies may be inter-

stitial or in substitutional sites. There is, nevertheless, a barrier to the

motion of the atoms because the motion is associated with a transient

distortion of the lattice.

Fig. 5: Mechanism of interstitial and substitutional

diffusion.

Assuming that the atom attempts jumps at a frequency ν0, the frequency
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of successful jumps is given by

ν = ν0 exp
{
−G∗

kT

}
≡ ν0 exp

{
S∗

k

}
︸ ︷︷ ︸

independent of T

× exp
{
−H∗

kT

}

where k and T are the Boltzmann constant and the absolute tempera-

ture respectively, and H∗ and S∗ the activation enthalpy and activation

entropy respectively. Since

D ∝ ν we find D = D0 exp
{
−H∗

kT

}
A plot of the logarithm of D versus 1/T should therefore give a straight

line (Fig. 6), the slope of which is −H∗/k. Note that H∗ is frequently

called the activation energy for diffusion and is often designated Q.

Fig. 6: Typical self–diffusion coefficients for pure

metals and for carbon in ferritic iron. The uppermost

diffusivity for each metal is at its melting temperature.
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The activation enthalpy of diffusion can be separated into two compo-

nents, one the enthalpy of migration (due to distortions) and the en-

thalpy of formation of a vacancy in an adjacent site. After all, for the

atom to jump it is necessary to have a vacant site; the equilibrium con-

centration of vacancies can be very small in solids. Since there are many

more interstitial vacancies, and since most interstitial sites are vacant,

interstitial atoms diffuse far more rapidly than substitutional solutes.

Additional Information

1. R.–E. Reed Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd

edition, published by Wadsworth.

2. A. H. Cottrell, Introduction to Metallurgy, 2nd edition, published by

The Institute of Materials.

3. Diffusion bonding, one example of the application of diffusion theory,

http://www.msm.cam.ac.uk/phase-trans/2005/Amir/bond.html

4. Hardening of gears, another application of diffusion, http://www.msm.cam.ac.uk/p

trans/2001/diffusion.html
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Part IB Materials Science & Metallurgy H. K. D. H. Bhadeshia

Course A, Metals and Alloys

Lecture 2: Atomic Diffusion

Diffusion is at first sight difficult to appreciate for the solid state. A

number of mechanisms have been proposed historically. This includes a

variety of ring mechanisms where atoms simply swap positions, but con-

troversy remained because the strain energies associated with such swaps

made the theories uncertain. One possibility is that diffusion occurs by

atoms jumping into vacancies. But the equilibrium concentration of va-

cancies is typically 10−6, which is very small. The theory was therefore

not generally accepted until an elegant experiment by Smigelskas and

Kirkendall (Fig. 7).

Fig. 7: Diffusion couple with markers

The experiment applies to solids as well as immiscible liquids. Consider

a couple made from A and B. If the diffusion fluxes of the two elements

are different (|JA| > |JB |) then there will be a net flow of matter past the
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inert markers, causing the couple to shift bodily relative to the markers.

This can only happen if diffusion is by a vacancy mechanism.

An observer located at the markers will see not only a change in con-

centration due to intrinsic diffusion, but also because of the Kirkendall

flow of matter past the markers. The net effect is described by the usual

Fick’s laws, but with an interdiffusion coefficient D which is a weighted

average of the two intrinsic diffusion coefficients:

D = XBDA + XADB

where X represents a mole fraction. It is the interdiffusion coefficient

that is measured in most experiments.

Structure Sensitive Diffusion

Fig. 8: Idealised grain

Crystals may contain nonequilibrium concentrations of defects such as

vacancies, dislocations and grain boundaries. These may provide easy

diffusion paths through an otherwise perfect structure. Thus, the grain

boundary diffusion coefficient Dgb is expected to be much greater than

the diffusion coefficient associated with the perfect structure, DP .
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Assume a cylindrical grain. On a cross section, the area presented by a

boundary is 2πrδ where δ is the thickness of the boundary. Note that

the boundary is shared between two adjacent grains so the thickness

associated with one grain is 1
2δ. The ratio of the areas of grain boundary

to grain is therefore

ratio of areas =
1
2
× 2πrδ

πr2
=

δ

r
=

2δ

d

where d is the grain diameter (Fig. 8).

For a unit area, the overall flux is the sum of that through the lattice

and that through the boundary:

J � JP + Jgb

2δ

d

so that Dmeasured = DP + Dgb

2δ

d

Note that although diffusion through the boundary is much faster, the

fraction of the sample which is the grain boundary phase is small. Con-

sequently, grain boundary or defect diffusion in general is only of im-

portance at low temperatures where DP � Dgb (Fig. 9).

Fig. 9: Structure sensitive diffusion. The dashed line

will in practice be curved.
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Some solids, particularly polymers, relax under the influence of solutes

which penetrate them. Alternatively, they react with the solute. For ex-

ample, the structure of an assembly of polymeric molecules may change

when penetrated by a solute, and indeed may undergo a change in vol-

ume. Some of these phenomena can be exploited in the design of de-

livery systems for medicines, where a slow release of chemicals may be

advantageous in contrast to immediate dissolution of tablets.

Thermodynamics of diffusion

Fick’s first law is empirical in that it assumes a proportionality between

the diffusion flux and the concentration gradient. However, diffusion

occurs so as to minimise the free energy. It should therefore be driven

by a gradient of free energy. But how do we represent the gradient in

the free energy of a particular solute?

The Chemical Potential

We first examine equilibrium for an allotropic transition (i.e. when the

structure changes but not the composition). Two phases α and γ are

said to be in equilibrium when they have equal free energies:

Gα = Gγ (1)

When temperature is a variable, the transition temperature is also fixed

by the above equation (Fig. 10).

A different approach is needed when chemical composition is also a

variable. Consider an alloy consisting of two components A and B. For

the phase α, the free energy will in general be a function of the mole
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Fig. 10: The transition temperature for an allotropic

transformation.

fractions (1 − X) and X of A and B respectively:

Gα = (1 − X)µA + XµB (2)

where µA represents the mean free energy of a mole of A atoms in α.

The term µ is called the chemical potential of A, and is illustrated in

Fig. 11a. Thus the free energy of a phase is simply the weighted mean

of the free energies of its component atoms. Of course, the latter varies

with concentration according to the slope of the tangent to the free

energy curve, as shown in Fig. 11.

Consider now the coexistence of two phases α and γ in our binary alloy.

They will only be in equilibrium with each other if the A atoms in γ

have the same free energy as the A atoms in α, and if the same is true

for the B atoms:

µα
A = µγ

A

µα
B = µγ

B

If the atoms of a particular species have the same free energy in both the

phases, then there is no tendency for them to migrate, and the system
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will be in stable equilibrium if this condition applies to all species of

atoms. Since the way in which the free energy of a phase varies with

concentration is unique to that phase, the concentration of a particular

species of atom need not be identical in phases which are at equilibrium.

Thus, in general we may write:

Xαγ
A �= Xγα

A

Xαγ
B �= Xγα

B

where Xαγ
i describes the mole fraction of element i in phase α which is

in equilibrium with phase γ etc.

The condition the chemical potential of each species of atom must be the

same in all phases at equilibrium is quite general and obviously justifies

the common tangent construction illustrated in Fig. 11b.

Diffusion in a Chemical Potential Gradient

The concept of a chemical potential is powerful indeed. Thus, it is

proper to say that diffusion is driven by gradients of free energy rather

than chemical concentration:

JA = −CAMA

∂µA

∂x
so that DA = CAMA

∂µA

∂CA

where the proportionality constant MA is known as the mobility of A.

In this equation, the diffusion coefficient is related to the mobility by

comparison with Fick’s first law.

The relationship is remarkable: if ∂µA/∂CA > 0 as for the solution il-

lustrated in Fig. 11a, then the diffusion coefficient is positive and the
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Fig. 11: (a) Diagram illustrating the meaning of a

chemical potential µ. (b) The common tangent con-

struction giving the equilibrium compositions of the

two phases at a fixed temperature.

chemical potential gradient is along the same direction as the concen-

tration gradient. However, if ∂µA/∂CA < 0 then the diffusion will occur

against a concentration gradient! This can only happen in a solution

where the free energy curve has the form illustrated in Fig. 12.
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Fig. 12: Free energy of mixing plotted as a function

of temperature and of the enthalpy ∆HM of mixing.

∆HM = 0 corresponds to an ideal solution where

the atoms of different species always tend to mix at

random and it is always the case that ∂µA/∂CA > 0.

When ∆HM < 0 the atoms prefer unlike neighbours

and it is always the case that ∂µA/∂CA > 0. When

∆HM > 0 the atoms prefer like neighbours so for

low temperatures and for certain composition ranges

∂µA/∂CA < 0 giving rise to the possibility of uphill

diffusion.

Additional Information

1. Kirkendall effect,

http://www.msm.cam.ac.uk/phase-trans/kirkendall.html

2. Comprehensive resources on thermodynamics,

http://www.msm.cam.ac.uk/phase-trans/thermodynamics.html
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