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Recent changes in the design of steam turbine power
plant have necessitated the replacement of bolted
flanges with welded joints. The design process therefore
requires a knowledge of the creep rupture strength of
the weld metal consumed in the welding process. This
paper presents a method which can be used to estimate
the creep rupture strength of ferritic steel weld metals,
from a knowledge of the creep strength of wrought
plates. The method is validated using published data.
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INTRODUCTION

The creep rupture life is frequently a fundamental limit on
the design of steam turbines for power plant. During steady
operation, the steam turbine casing achieves the live steam
temperature; the steam pressure is contained within a
casing; this gives rise to a steady state stress which at
elevated temperatures can cause the casing to fail by a creep
mechanism.

The present paper is concerned with small steam turbines
(<40 MW), of the kind described by Sheard and Raine.’
This uses a single casing made in two halves which fit
around the turbine rotor; the two halves are connected at a
horizontal joint using bolts. This bolting limits the pressure
differential (i.e. the difference in pressure across the wall of
the casing) which can be tolerated to ~ 70 bar. It is possible
to overcome this limitation by using multiple casings, but
there is then a dramatic increase in the manufacturing cost.

The conditions currently desired of small steam turbines,
90 bar at 540°C (Ref. 2), are beyond the capability of even
the most aggressive horizontal joint bolt design, making it
necessary to use an expensive double casing. Fortunately,
an alternative to this design was implemented recently by
Mason and Sheard® for a 30-4 MW steam turbine. The
details of this single casing design (Fig. 1), which permits
the higher pressure differential, are beyond the scope of the
present paper, but there are two points that need to be
emphasised in the context of the present work:

(i) as for the usual design, the steam is fed into the
appropriate part of the casing via a steam pipe; this
pipe is conventionally joined to the casing with a
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vertical flange joint which is bolted together; the
flange has had to be upgraded to tolerate the higher
steam pressures involved

(ii) the large flange of the steam pipe and its associated

bolting comprise a bulky system, making it difficult

to assemble the turbine unit.
To overcome these difficulties, it has been decided to replace
the bolted vertical joint by a welded joint. For proprietary
reasons, the heat affected zone of the weld is expected to
behave identically in creep to the region of steel far from the
weld. Therefore, the creep properties of the weld metal itself
become the issue. Hence, the aim of the present investiga-
tion is to estimate the creep rupture life of the weld metal
used in fabricating the joint.

The methodology involves the creation of neural network
models which adequately capture the complexity of the
creep rupture phenomenon. Such models rely for their
training on experimental data, available in large quantities
for wrought power plant steels but not for actual weld
metals. For this reason, the present paper begins by
justifying the use of wrought steel data to estimate weld
metal properties. The model is validated later in the paper.

COMPARISON OF WELD METAL AND
WROUGHT PLATE

Weld metals and steels of matching composition seem to
have similar creep rupture properties. The chemical
compositions of weld metals and corresponding steel
plates are not very different (Fig. 2). Of course, weld
metal will, in general, have higher oxygen and nitrogen
concentrations, but the former should not affect creep
resistance. Although differences in the nitrogen concentra-
tion are important, they can easily be taken into account
both in the prediction of carbonitride formation and in the
neural network model where nitrogen is an input.

The microstructure of an as deposited weld metal is
naturally radically different from that of a wrought steel.
However, even this is unimportant, because the severe
tempering heat treatments used after the welding procedure
essentially wipe out the original microstructure and replace
it with one which is tempered and similar to that of the steel
plate. It is probably for this reason that the welding process
itself is found not to influence the creep rupture life.’

CREEP RUPTURE STRENGTH: VARIABLES
The basic principles of alloy design for creep resistance are
well established and well founded on experience. The steels
must have a stable microstructure which contains fine alloy
carbides to resist the motion of dislocations; however,
changes are inevitable over the long service time, so there
must be sufficient solid solution strengthening to ensure
long term creep resistance. There may be other requirements
such as weldability and corrosion and oxidation resistance.
It is nevertheless difficult to express the design process
quantitatively, given the large number of interacting
variables.
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The variables taken into account in the present work are
listed in Table 1. Note that all information concerned with
the prediction of microstructure and properties is, in
principle, to be found in this set of parameters, as chemical
composition and heat treatments are comprehensively
included. There may, of course, be many other independent
variables that might be considered important in creep
analysis, but these are for the moment neglected for two
reasons. First, an empirical analysis requires experimental
data; an overambitious list would simply reduce the data
set, as publications frequently do not report all of the
necessary parameters. Second, the effect of any missing
variables would simply be reflected in the uncertainties of
prediction. If the predictions are ‘noisy’ then they can be
improved with carefully designed experiments at a future
date. Bearing this in mind, the results to be presented are
based on some 5420 sets of experiments obtained from the
published literature.®~** Earlier work on the creep rupture
stress of wrought steels by Brun et al.*® used a total of 2066
lines. The present methodology is described briefly below.

METHOD

A neural network is a general method of regression analysis
in which a very flexible nonlinear function is fitted to
experimental data, the details of which have been
extensively reviewed.*’ It is nevertheless useful to present
some salient features, to place the technique in context.

The flexibility of the non-linear function is related to the
number of hidden nodes i. Thus, the dependent variable y is
given in the present work by

y=>wPh+0® )

where

hiztanh<Zwi<jl)xj+9i(l)> N ¢

J

where x; are the j variables on which the output y depends,
w; are the weights (coefficients), and 6; are the biases
(equivalent to the constants in linear regression analysis).
The combination of equation (2) with a set of weights,
biases, value of i, and the minimum and maximum values
of the input variables defines the network completely.
Note that the complexity of the function is related to the
number of hidden units. The availability of a sufficiently
complex and flexible function means that the analysis
is not as restricted as in linear regression where the
form of the equation has to be defined explicitly before
the analysis.

The neural network can capture interactions between the
inputs because the hidden units are non-linear. The nature
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of these interactions is implicit in the values of the weights,
but the weights may not always be easy to interpret. For
example, there may exist more than just pairwise interac-
tions, in which case the problem becomes difficult to visualise
from an examination of the weights. A better method is
actually to use the network to make predictions and to see
how these depend on various combinations of inputs.

Error estimates

The input parameters are generally assumed in the analysis
to be precise, and it is normal to calculate an overall error
by comparing the predicted values y;j of the output against
those measured #;, for example

EDOCZ(lj*yj)z N )
j

The error Ep is expected to increase if important input
variables have been excluded from the analysis. Whereas Ep
gives an overall perceived level of noise in the output
parameter, it is, on its own, an unsatisfying description of
the uncertainties of prediction.

MacKay has developed a particularly useful treatment of
neural networks in a Bayesian framework,*” which allows
the calculation of error bars representing the uncertainty in
the fitting parameters. The method recognises that there are
many functions that can be fitted or extrapolated into
uncertain regions of the input space, without unduly
compromising the fit in adjacent regions which are rich in
accurate data. Instead of calculating a unique set of weights,
a probability distribution of sets of weights is used to define



the fitting uncertainty. The error bars therefore become
large when data are sparse or locally noisy.

The error bars presented throughout the present work
therefore represent a combination of the perceived level of
noise in the output (the creep rupture strength) and the
fitting uncertainty as described above.

Opverfitting

A potential difficulty with the use of powerful non-linear
regression methods is the possibility of overfitting data. To
avoid this, the experimental data can be divided into two
sets: a training data set and a test data set. The model is
produced using only the training data. The test data are
then used to check that the model functions when presented
with previously unseen data. The training error tends to
decrease continuously as the model complexity increases. It
is the minimum in the test error that enables the model
which generalises best on unseen data to be chosen.*’

The above discussion of overfitting is rather brief because
the problem does not simply involve the minimisation of
test error. There are other parameters that control the
complexity, which are adjusted automatically to try to
achieve the appropriate complexity of model.*’
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ANALYSIS
The aim of the neural network in the present case was to
predict the creep rupture stress as a function of the variables
given in Table 1. These variables include a comprehensive
description of chemical composition and three heat
treatments (each characterised by a temperature, duration,
and cooling rate from the treatment temperature). If the
steel had undergone only two heat treatments, the annealing
temperature was set to 300 K to correspond to room
temperature. The time to rupture was expressed in
logarithmic form, along with the output creep rupture
stress, to improve the accuracy of the model.

All 37 different input variables and the output were
normalised within the range +0-5 according to

xN= X — Xmin —05

Xmax — Xmin

where x is the original value from the database, x,.x and
Xmin are the respective maximum and minimum of each
variable in the original data, and xy is the normalised value.
This step is not essential to the running of the neural
network but later allows a convenient way to compare the
results of the output. Figure 3 shows the general structure
of the neural network.

Table 1 Details of inputs in database: composition and heat treatments

Variable Range Mean Standard deviation
Test conditions
log(life, h) —0:22- 4529 3-:00 0-28
Temperature, K 723-977 867 60-97
Composition
C, wt-% 0-004-0-23 0-11 0-044
S, wt-% 0-01-0-86 0-28 0-17
Mn, wt-% 0-01-0-92 0-50 0-12
P, wt-% 0-001-0-029 0-013 0-0074
S, wt-% 0-001-0-02 0-0074 0-0048
Cr, wt-% 2:17-12-9 8-20 3-46
Mo, wt-% 0-04-2-99 0-84 0-53
Ni, wt-% 0-01-2-00 0-23 0-28
Al, wt-% 0-001-0-057 0-011 0-012
B, wt-% 0-00-0-051 0-0013 0-0041
Co, wt-% 0-00-3-09 0-13 0-49
Cu, wt-% 0-01-0-87 0-069 0-099
N, wt-% 0-001-0-165 0-030 0-027
Nb, wt-% 0-005-0-312 0-037 0-045
vV, wt-% 0-01-0-28 0-13 0-10
W, wt-% 0-01-3-93 0-50 0-79
0O, wt-% 0-003-0-035 0-0099 0-0031
Re, wt-% 0-00-1-69 0-014 0-12
Ta, wt-% 0-00-0-1 0-0007 0-0066
Normalising
Temperature, K 11231453 1283 69-16
Duration, h 0-17-33 2:05 3-75
Cooling rate
in furnace 0-1 0-060 0-24
in air 0-1 0-58 0-49
oil quenched 0-1 0-25 0-43
water quenched 0-1 0-11 0-31
Tempering
Temperature, K 823-1133 979 74-88
Duration, h 0-50-32 3-64 617
Cooling rate
in furnace 0-1 0-060 0-24
in air 0-1 0-88 0-33
oil quenched 0-1 0-030 0-17
water quenched 0-1 0-032 0-18
Annealing
Temperature, K 300-1023 4657 282-5
Duration, h 0-50-50 4-38 837
Cooling rate
in furnace 0-1 0-054 0-226
in air 0-1 0-946 0-226
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HIDDEN OUTPUT
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3 Structure of neural network

For several runs of the neural network, Fig. 4a shows the
model perceived noise o, in the creep rupture stress. As
expected, o, decreases as the fitting function becomes more
flexible with larger numbers of hidden units. By contrast,
Fig. 4b shows that the test error at first decreases and then
levels out, with minima at 18 —22 hidden units.

Figure 5 shows comparisons made for the best model,
consisting of 22 hidden units, using the split database. The
comparison of seen data with the model shows very good
agreement as should be expected (Fig. 5a). The analysis
of unseen data by the neural network also shows good
agreement (Fig. 5b).

The parameter oy, indicates the importance of an input in
terms of its variation having an effect on the output of the
model. Figure 6 compares values of oy, for a selection of
inputs for the top five models. A high value of o, for a
specific input can be caused by the corresponding variable
inducing a large variation in the output, but it can be seen
from Fig. 6 that different models can assign varying
significance to the same input. In such cases, it is possible
that a committee of models can make a more reliable
prediction than an individual model. The best models are
ranked using the values of the test errors. Committees are
then formed by combining the predictions of the best L
models, where L=1, 2, ...; the size of the committee is
therefore given by the value of L. A plot of the test error of
the committee versus its size gives a minimum which defines
the optimum size of the committee, as shown in Fig. 7. The
test error associated with the best single model is clearly
greater than that of any of the committees. It was
determined in the present case that a committee of 11
models would be the best choice, being the committee of the
lowest test error. The committee was then retrained on the
entire data set without changing the complexity of any of its
members.

The predictions of the committee trained on the entire
data set can be compared with the original data set, as
shown in Fig. 8. It can be seen that there is excellent
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agreement between the values and that the error bars are
extremely small.

APPLICATION OF MODEL

Figure 9 shows predictions using the neural network in
examining the creep rupture strength of a standard 2-25Cr -
Mo steel and a modern 10Cr—Mo—W heat resistant steel
(Table 2).

The error bounds in Fig. 9 represent the uncertainty in
fitting the non-linear function to the training data, as 65%
confidence limits with the o, added quadratically. The
calculated lifetime of each steel was examined at tempera-
tures of 550, 600, and 650°C. The network correctly predicts
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that the creep strength of the two steels will reduce with
increasing lifetime and temperature, and also that the
10Cr—Mo—-W steel is more creep resistant than 2-25Cr—
Mo. The error bars, represented by dashed lines, are smaller
when the neural network is confident of the predictions that
it is making. Increases in error bar size, such as at long life
for the 2-25Cr—Mo alloy at 650°C (Fig. 9¢), indicate that a
lack of experimental data is restricting the accuracy of the
predictions.

The behaviour of the model can be assessed further by
examining creep rupture strength of a variety of steels and
determining whether the predictions made by the neural
network agree with practical results or microstructural
theory. In one case, the creep rupture stress of an
uncommon 3%Cr steel was examined using the neural
network and then compared with the results for the

Table 2 Heat treatments and compositions of two
common power plant steels
2-25%Cr 10%Cr
Normalising
Temperature, K 1203 1338
Duration, h 6 2
Cooling rate water quenched in air
Tempering
Temperature, K 908 1043
Duration, h 6 4
Cooling rate in air in air
Annealing
Temperature, K 873 1013
Duration, h 2 4
Cooling rate in air in air
Composition
C, wt-% 0-15 0-12
Si, wt-% 0-21 0-05
Mn, wt-% 0-53 0-64
P, wt-% 0-012 0-016
S, wt-% 0-012 0-001
Cr, wt-% 2-4 10-61
Mo, wt-% 1-01 0-44
Ni, wt-% 0-14 0-32
Al wt-% 0-018 0-022
B, wt-% 0-0003 0-0022
Co, wt-% 0-05 0-015
Cu, wt-% 0-16 0-86
N, wt-% 0-0108 0-064
Nb, wt-% 0-005 0-01
V, wt-% 0-01 0-21
W, wt-% 0-01 1-87
0O, wt-% 0-01 0-01
Re, wt-% 0-0003 0-0003
Ta, wt-% 0-0003 0-0003
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9 Neural network results for well known power plant steels

2-25%Cer steel examined above. It could be expected that the
3%Cr steel should have a consistently higher creep rupture
stress than the 2-:25%Cr steel owing to the increase in
chromium content, but it can be seen from Fig. 10 that they
have comparable creep rupture lives. Figure 10 also shows
that the uncertainty for the 3%Cr steel is much greater than
that for the 2-25%Cer steel, this being because the amount of
information in the database on 3%Cr steel is much less than
that on 2-:25%Cr steel.

The above phenomenon can be explained by micro-
structural theory and is an excellent result for the neural
network. The microstructural trends were examined by
Robson and Bhadeshia;*® the results of this research are
represented in Fig. 11, showing plots of carbide volume
fraction versus time for 3%Cr steel and for 2-25%Cr steel. It
is apparent that the rate at which M,;Cg precipitates in
3%Cr steel is very much greater than that in 2-25%Cr steel.
It can also be seen that the maximum volume fraction of
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M,X attained by the 3%Cr alloy is much less. These plots
show that, in the 2-25%Cr steel, M,X starts to precipitate
well before M»3Cq, forming a large volume fraction which
then suppresses M»3Cg formation (Fig. 11a). However, in
the higher chromium steel both carbides tend to precipitate
at similar times, and both phases are then competing for
solute (Fig. 116). The M»3C¢ phase dominates and M,X
dissolves. The M,X precipitate is considered to be a factor
in improving creep rupture strength, whereas M,3Cg¢ is
considered less effective in resisting creep deformation
owing to its large size. This then explains why the 3%Cr steel
is not as creep resistant as expected.

The neural network model may be used to examine the
influence of any of the input variables on the output. Hence,
the effect of varying composition in a particular alloy under
certain conditions may be determined. Figure 12 shows
trends with increasing tungsten content, with a maximum at
~3 wt-% for the 10%Cr alloy examined above. Although
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the uncertainty of the predictions is large, the decline at
greater than 3 wt-% is expected as a result of the formation
of ¢ ferrite, which is generally considered detrimental to
creep properties. The National Physical Laboratory’s
metallurgical thermochemistry and thermodynamics data-
base® (MTDATA) was used to determine at what weight
per cent of tungsten ¢ ferrite would start to form. The
result was 2-7 wt-% tungsten, agreeing well with the neural
network results.

APPLICATION TO WELD METALS

It has already been argued above that weld metals and steels
of matching composition have similar creep rupture
properties. The hypothesis can be proved by examining
the relatively limited data on all weld metal tests in the
published literature.>'® Figure 13 shows the encouraging
agreement between calculated values of creep rupture stress
and measured values® for 2:25Cr— Mo welds (Table 2). The
predictions were made without any adjustment to the
model, which did not interrogate any weld data during its
creation. The heat treatments were changed to represent the
welding process and the post-weld heat treatment (PWHT).
It was determined, by trial and error, that setting the
normalising process to 1200 K for 6 h was a fair rep-
resentation of the welding process itself. The tempering heat
treatment was then set to the conditions of the PWHT and
the annealing temperature was set to 300 K to show that no
further heat treatments had been carried out.

Figure 13 confirms that it is reasonable to assume that the
creep rupture life of weld metals can be modelled on the
basis of wrought steels. The results are plotted against
varying carbon content because the literature from which
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these data were taken was, in part, examining the effect of
varying carbon weight per cent on weld metals.

The model may also be used to determine creep rupture
stress of modern, modified 9Cr—-Mo-W weld metals.
There is much less information in the open literature
about this type of weld metal in terms of creep data, and
so there is less opportunity to test the model. Naoi et al.'®
have carried out creep tests on a 9Cr—Mo—W gas tungsten
arc weld metal, with composition (wt-%) Fe-0-07C—
0-20Si—1-:01Mn—0-006P—0-004S —8-94Cr—0-48Mo—0-36Ni—
0-032N -0:04Nb—-0-09V —1-:62W. Figure 14 shows that the
model is also capable of predicting the creep rupture life of
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modified 9Cr—Mo-W weld metals. The ability to predict
the creep properties of these welds has direct industrial
implications, as discussed above.

CONCLUSIONS

A neural network model has been created to study the
influence of chemical composition and heat treatment on
the creep rupture strength of ferritic steels. The model is
based on a very large data set accumulated from the
literature.

The model has been successfully applied to weld metal
data reported in the literature, even though these were not
used in the creation of the model. The present work is
helping in the choice of weld metal for the manufacture of
small power plant based on a steam turbine.
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