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ABSTRACT

Creep resistant steels must be reliable over very long periods of time in severe environ-
ments. Their microstructures have to be very stable, both in the wrought and in the welded
states. This paper reviews the quantitative methods for the design of steels for elevated
temperature applications. A methodology is described for the calculation of complex pre-
cipitation reactions over periods extending many tens of years. However, microstructure
alone is not enough in the design of alloys. The estimation of the creep rupture stress
using a neural network technique is described in the second part of this review. The cal-
culation of the influence of solute elements on the self diffusivity of iron, which features
in many creep equations, is an emerging area in alloy design. The methodology for such
calculations is reviewed in the final section of the paper.

INTRODUCTION

Typical operating parameters for steels used in the manufacture of power plant are compared
against corresponding values for nickel alloys in aeroengines, in Table 1. In both cases, the
service conditions are severe. But this is especially so for steels where the service life is many
decades. The degree of reliability demanded of heat resistant steels is therefore extraordinary,
and must represent one of the highest achievements of technology. By contrast, computers,
which are frequently identified with advanced technology, seldom last for more than two years
and are generally obsolete at the point of installation!

Property Aeroengine Power Plant
Temperature > 1000°C 540-750°C
Pressure ~ 3 bar 160-370 bar
Design life 10* h 2.5 x10° h
T100,000 h 10 MPa 100 MPa
Coating Yes No
Forced cooling Yes No
Single crystal Yes No

Table 1: Service conditions for a component in the hot part of an aeroengine
and one in the hottest part of a power plant. The lower limits for the power
plant component are representative of current technology. The stress is a

100,000 h creep rupture strength.

It should not be surprising that the number of variables involved in the design of creep—
resistant steels is very large — in fact, we shall show later that there are at least thirty parameters
which need to be controlled in any experiment or calculation of creep properties.



The variables can ideally be taken into account using what scientists like to call “physical
models”, 7.e. theories which explain a large class of observations, which contain few arbitrary
elements and which make verifiable predictions. The first part of this paper deals with such
physical models in the prediction of microstructure.

There is no adequate theory to deal with the second task, which is the estimation of creep
rupture strength as a function of the steel composition, microstructure and heat treatment.
Difficult problems like this, where the general concepts might be understood but which are not
as yet amenable to fundamental treatment, are common in metallurgy. To form a complete
design—technology, it is consequently necessary to resort to careful empiricism. The second
part of this paper deals with a semi—empirical method implemented to achieve useful results.
The combination of physical and empirical models can then be used to attempt the design of
alloys.

The final part of the paper deals with the estimation of the self diffusion coefficient of
iron containing solute additions. This is perceived to be an important parameter in creep
deformation; it has become prominent in recent work because of the availability of commercial
software capable of estimating the diffusivity. It is useful therefore to summarise the basis of
such calculations, even though it is too early to comment on their significance in the context
of changes in creep properties.

THE MICROSTRUCTURE

There is a large variety of heat resistant steels (Table 2). The ones with the lowest so-
lute concentrations might contain substantial quantities of allotriomorphic ferrite and some
pearlite, but the vast majority have bainitic or martensitic microstructures in the normalised
condition. After normalising the steels are severely tempered to produce a “stable” microstruc-
ture consisting of a variety of alloy carbides in a ferritic matrix. The known precipitates are
listed in Fig. 1; they determine the microstructure and are crucial in the development of creep
strain. The task is therefore to model the evolution of precipitation and dissolution reactions.

Possible phases

graphite

epsilon Fe, 4C
cementite Fe;C
Chi Fe,C

M,X MgC M,;Coq

M.C; Laves

M;C, Z-phase

Fig. 1: The variety of precipitates to be found in power plant steels. The
iron—rich carbides such as cementite form extremely rapidly, whereas graphite
forms incredibly slowly because it is difficult to nucleate. MzC, and Z—phase

are recent discoveries [2,3].



Designation C Si Mn Ni Mo Cr A%
1CriMo 0.15 025 050 - 0.6 0.95
2CrMoV 0.15 025 0.50 0.05  0.50 0.30 0.25
1CriMoiV 0.12 025 050 - 0.6 0.45 0.25
1CrMoV 025 025 0.75 0.70  1.00 1.10 0.35
21Cr1Mo 0.15 025 050 0.10  1.00 2.30 0.00
Mod. 2;CriMo | 0.1 0.05 0.5 0.16  1.00 230 0.25
Ti=0.03 B=0.0024
3.0Cr1.5Mo 0.1 02 10 01 L5 3.0 0.1
3.5NiCrMoV 0.24 0.01 020 350 045 1.70 0.10
9Cr1Mo 0.10 0.60 040 - 1.00 9.00 -
Mod. 9CrIMo | 0.1 035 0.40 0.05  0.95 8.75 0.22
Nb=0.08 N=0.05 Al <0.04
9CriMoWV 0.11 0.04 045 0.05  0.50 9.00 0.20
W=1.84 Nb=0.07 N=0.05
12CrMoV 0.20 0.25 0.50 0.50  1.00 11.25 0.30
12CrMoVW 0.20 0.25 0.50 0.50  1.00 11.25  0.30
W=0.35
12CrMoVNb 0.15 020 080 0.75  0.55 11.50  0.28
Nb 0.30 N 0.06

Table 2: Typical compositions (wt.% ) of creep-resistant steels. The range of
alloys available is in fact much larger than this, for example, there is a variety

of alloys available for bolting applications.

The results of equilibrium calculations which give the phase fractions of the carbides as a
function of the overall alloy composition and temperature, are given in Fig. 2 for the common
power plant steels. The calculations have been done using the MTDATA [1] computer program
and SGTE database, taking into account the carbide phases and Laves phase listed, together
with cementite. The chemical elements considered are carbon, silicon, manganese, chromium,
nickel, molybdenum, vanadium, niobium and nitrogen. M;C, has recently been identified in
1Cr—-0.5Mo steels [2] but along with graphite, has not been included in the analysis.

Equilibrium calculations such as those presented in Fig. 2 are useful in specifying the ul-
timate microstructure but the results are far from the actual microstructures that exist during
service. It is necessary in practice to be able to calculate time-temperature—transformation
diagrams for tempering reactions, as a function of steel chemical composition and tempering
temperature. In order to do this, a theory capable of handling several simultaneous precip-
itation reactions has been developed [4], where the different phases influence each other, for
example by drawing the same solute from the matrix ferrite.
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Fig. 2: Equilibrium fractions of carbides in some common power plant steels,
as calculated using MTDATA and the SGTE thermodynamic database for
565 °C (838 K). Very small fractions of vanadium and niobium carbonitrides
are are present in some steels but are not shown. Thus, the modified 9Cr1Mo
contains 0.0009 NbN and 0.003 VN, the 9CrMoWYV steel contains 0.0008 NbN
and 0.0032 VN. The calculations allowed the existence of all the carbides
described in Figure 1 with the exception of graphite, epsilon, Chi, Z-phase
and MyC,.

OVERALL TRANSFORMATION KINETICS

A model for a single transformation begins with the calculation of the nucleation and
growth rates using classical theory, but an estimation of the volume fraction requires impinge-
ment between particles to be taken into account. This is generally done using the extended
volume concept of Johnson, Mehl, Avrami, and Kolmogorov [5] as illustrated in Fig. 3. Sup-
pose that two particles exist at time t; a small interval 6t later, new regions marked a, b, ¢ &
d are formed assuming that they are able to grow unrestricted in extended space whether or
not the region into which they grow is already transformed. However, only those components
of a, b, ¢ & d which lie in previously untransformed matrix can contribute to a change in the
real volume of the product phase (identified by the subscript ‘1’) so that :

Vi

dVIZ( 7V

)avy (1)
where it is assumed that the microstructure develops randomly. The superscript e refers to
extended volume, V) is the volume of phase 1 and V is the total volume. Multiplying the
change in extended volume by the probability of finding untransformed regions has the effect
of excluding regions such as b, which clearly cannot contribute to the real change in volume of
the product. This equation can easily be integrated to obtain the real volume fraction,

Vi Ve
Vlzl—exp{—vl} (2)

Nucleation and growth rates can readily be substituted into V°, leading to the familiar Avrami
equation.
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Fig. 3: The concept of extended volume. Two precipitate particles have
nucleated and grown to a finite size in the time ¢. New regions ¢ and d are
formed as the original particles grow, but a & b are new particles, of which b

has formed in a region which is already transformed.

In practice, there are many cases where several transformations occur together. The
different reactions interfere with each other in a way which is seminal to the development of
power plant microstructures. The principles involved are first illustrated with an example in
which § and @ precipitate at the same time from the parent phase which is designated «. For
the sake of discussion it is assumed that the nucleation and growth rates do not change with
time and that the particles grow isotropically.

The increase in the extended volume due to particles nucleated in a time interval ¢ = 7 to
t = 7 + dr is, therefore, given by

. 4
dvs = ng%(t —7)*I4(V) dr (3)
aV§ = SrGY(t — 1) L,(V) dr (4)

where G, Gy, I5 and I, are the growth and nucleation rates of 3 and 0 respectively, all of
which are assumed here to be independent of time. V is the total volume of the system. For
each phase, the increase in extended volume will consist of three separate parts. Thus, for 3:

(i) [ which has formed in untransformed a.
(ii) B which has formed in regions which are already g.
(iii) B which has formed in regions which are already 6.

Only G formed in untransformed « will contribute to the real volume of §. On average a

Vi+Vy
1%

fraction (1 — ) of the extended volume will be in previously untransformed material. It

follows that the increase in real volume of 3 is given by

Va+V, .
v, = (1 - ﬂT) avs (5)
and similarly for @,
Vg +Vy
d‘/e - 1 - T dVge (6)

V}3 is expected to be some complicated function of Vj so it is not generally possible to integrate
these expressions analytically to find the relationship between the real and extended volumes.



Numerical integration is straightforward and offers the opportunity to change the boundary
conditions for nucleation and growth as transformation proceeds, to account for the change in
the matrix composition during the course of reaction. The method can in principle be applied
to any number of simultaneous reactions.

Complex reactions The multiple reactions found in power plant steels have important
complications which can all be dealt with in the scheme of simultaneous transformations as
presented above. The phases interfere with each other not only by reducing the volume available
for transformation, but also by removing solute from the matrix and thereby changing its
composition. This change in matrix composition affects the growth and nucleation rates of the
phases. The main features of the application of the theory to power plant steels are summarised
below; a full description is given in references [4].

e The model allows for the simultaneous precipitation of M,X, M,;Cy, M.C5, M;C
and Laves phase. M;C is assumed to nucleate instantaneously with the paraequilib-
rium composition [6]. Subsequent enrichment of M;C as it approaches its equilibrium
composition is accounted for.

e All the phases, except M;C, form close to their equilibrium composition. The driving
forces and compositions of the precipitating phases are calculated using MTDATA
[1].

e The interaction between the precipitating phases is accounted for by considering the
change in the average solute level in the matrix as each phase forms.

The model does not require prior knowledge of the precipitation sequence.
Dissolution of non—equilibrium phases is incorporated as a natural event.

A single set of fitting parameters for the nucleation equations (site densities and
surface energies) has been found which is applicable to a wide range of power plant
steels.

The compositions of three power plant alloys used here for illustration purposes, are shown
in Table 3. These three alloys, whilst of quite different chemical compositions, show similar
precipitation sequences [4,7,8] but with vastly different rates. For example, at 600 °C the time
taken before M,,Cg is observed is 1h in the 10CrMoV steel [4], 10h in the 3Cr1.5Mo alloy
[7] and in excess of 1000h in the 22Cr1Mo steel [8]. These differences have never before been
explained prior to the simultaneous transformations model [4].

C N Mn Cr Mo Ni V Nb

QiCrlMo 0.15 - 0.50 2.12 0.9 0.17 - -
3Crl.5Mo | 0.1 - 1.0 3.0 1.5 0.1 0.1 -
10CrMoV [0.11 0.056 0.50 10.22 1.42 0.55 0.20 0.50

Table 3: Concentration (in weight%) of the major alloying elements in the

steels used to demonstrate the model.

MICROSTRUCTURE CALCULATIONS

A plot showing the predicted variation of volume fraction of each precipitate as a function
of time at 600 °C is shown in Fig. 4. Consistent with experiments, the precipitation kinetics
of M,;Cy are predicted to be much slower in the Q%CrlMo steel compared to the 10CrMoV
and 3Crl1.5Mo alloys. One contributing factor is that in the ZiCrlMo steel a relatively large
volume fraction of M, X and M, C, form prior to M,5C4. These deplete the matrix and therefore
suppress M,;Cy precipitation. The volume fraction of MyX which forms in the 10CrMoV steel
is relatively small, and there remains a considerable excess of solute in the matrix, allowing



M,;Cg to precipitate rapidly. Similarly, in the 3Cr1.5Mo steel the volume fractions of M, X and
M. C; are insufficient to suppress M,;Cy precipitation to the same extent as in the Q%CrlMo
steel.

M,;Cy is frequently observed in the form of coarse particles which are less effective in
hindering creep deformation. Delaying its precipitation would have the effect of stabilising
the finer dispersions of MyX and MX to longer times with a possible enhancement of creep
strength.

Calculations like these can be used to design microstructures exploiting knowledge built
up over decades concerning what is good and bad for creep strength. It is often argued that
Laves phase formation is bad for creep resistance — it leads to a reduction in the concentration
of solid solution strengthening elements; since the Laves precipitates are few and coarse, they
do not themselves contribute significantly to strength. The model presented here can be used
to design against Laves phase formation.

We note for the moment, that this is as far as microstructure modelling has progressed.
The models are not yet capable of giving size distributions and even if that were to be possible,
there are no physical models of creep deformation which have sufficient precision to make use
of this information. We shall not be discouraged by this since good empirical methods are
available. The work described below originates from research by Brun et al. [9] and Cole and
Bhadeshia [10].

CREEP RUPTURE STRENGTH — THE VARIABLES

The basic principles of alloy design for creep resistance are well-established and well—
founded on experience. The steels must have a stable microstructure which contains fine alloy
carbides to resist the motion of dislocations; however, changes are inevitable over the long
service time so that there must be sufficient solid solution strengthening to ensure long term
creep resistance. There may be other requirements such as weldability, corrosion and oxidation
resistance. It is nevertheless difficult to express the design process quantitatively given the large
number of interacting variables.

These variables are described later in the context of calculations in Table 4. For the mo-
ment we note that the entire information about microstructure and properties is in principle
locked up in this set of parameters since chemical composition and heat treatment are compre-
hensively included. There may, of course, be many other independent variables that might be
considered important in creep analysis, but these are for the moment neglected for two reasons.
Firstly, an empirical analysis requires experimental data; an over ambitious list would simply
reduce the dataset since publications frequently do not report all of the necessary parameters.
Secondly, the effect of any missing variables would simply be reflected in the uncertainties of
prediction. If the predictions are noisy then they can be improved with carefully designed
experiments at a future date. Bearing this in mind, the results to be presented are based on
some 2000 sets of experiments obtained from the published literature. We now proceed to
describe briefly the methodology.

THE NEURAL NETWORK METHOD

Most people are familiar with regression analysis where data are best fitted to a specified
relationship which is usually linear. The result is an equation in which each of the inputs T,
is multiplied by a weight w,; the sum of all such products and a constant 6 then gives an
estimate of the output y =) W+ 0. 1t is well understood that there are dangers in using
such relationships beyond the range of fitted data.

A more general method of regression is neural network analysis. As before, the input
data z; are multiplied by weights, but the sum of all these products forms the argument of a
hyperbolic tangent. The output y is therefore a non-linear function of z, the function usually

chosen being the hyperbolic tangent because of its flexibility. The exact shape of the hyperbolic
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Fig. 4: The predicted evolution of precipitate volume fractions at 600 °C for
three power plant materials (a) Q%CrlMo (b) 3Cr1.5Mo and (c¢) 10CrMoV.



tangent can be varied by altering the weights (Fig. 5a). Further degrees of non—linearity can
be introduced by combining several of these hyperbolic tangents (Fig. 5b), so that the neural
network method is able to capture almost arbitrarily non—linear relationships. For example, it
is well known that the effect of chromium on the microstructure of steels is quite different at
large concentrations than in dilute alloys. Ordinary regression analysis cannot cope with such
changes in the form of relationships.

(a) (b)

Fig. 5: (a) Three different hyperbolic tangent functions; the “strength” of
each depends on the weights. (b) A combination of two hyperbolic tangents

to produce a more complex model.

A potential difficulty with the use of powerful regression methods is the possibility of
overfitting data (Fig. 6). For example, one can produce a neural network model for a completely
random set of data. To avoid this difficulty, the experimental data can be divided into two
sets, a training dataset and a test dataset. The model is produced using only the training
data. The test data are then used to check that the model behaves itself when presented with
previously unseen data.

.
-
.
.

Fig. 6: A complicated model may overfit the data. In this case, a linear

relationship is all that is justified by the noise in the data.

Neural network models in many ways mimic human experience and are capable of learning
or being trained to recognise the correct science rather than nonsensical trends. Unlike human
experience, these models can be transferred readily between generations and steadily developed
to make design tools of lasting value. These models also impose a discipline on the digital
storage of valuable experimental data, which may otherwise be lost with the passage of time.



The technique is extremely powerful and useful. Its application to creep rupture strength
analysis is presented below. The details can be found elsewhere [11] but it is important to note
that the generalisation of the model on unseen data has been tested extensively against large
quantities of information.

CALCULATIONS OF CREEP RUPTURE STRENGTH

Fig. 7 shows the variation in the creep rupture strength (105 h) of a modern “10CrMoW”
creep resistant steel (Table 4) as a function of the temperature, carbon, chromium and molyb-
denum concentrations. The error bounds represent the uncertainty in fitting the non-linear
function to the training data, as 65% confidence limits. There is an additional error associated
with each calculation, which is the noise in the experimental data, which is perceived to be of
the order of +2%. The engineering design of power plant is based on the ability to support a
stress of 100 MPa for 10° h at the service temperature. The apparent insensitivity of the creep
rupture strength to the molybdenum or chromium concentrations for 10° h is not surprising
given that the carbides will all be extremely coarse at that stage of life.

Similar data for the classical QiCrlMo steel are illustrated in Fig. 8. The fitting uncer-
tainties are smaller in this case because of the larger quantity of available data since this alloy
has been available and studied for a much longer time.

Calculations like these can now be routinely carried out. Furthermore, the models can
be improved both as more data become available and as creep deformation becomes better
understood. The model can be used in a variety of ways. The combined application of the
physical models presented earlier, and the neural network model has led to predictions of novel
alloys which ought to have much better creep resistance than any comparable commercial alloy
[9]. There are long—term experiments in progress to test these designer—alloys. Another way
is to apply the models to welding alloys, for which there are much fewer data when compared
with wrought steels.

WELDING ALLOYS

Weld metals and steels of matching composition seem to have similar creep rupture prop-
erties. In fact, the chemical compositions of weld metals and corresponding steel plates are
not very different (Table 5). Of course, weld metal will have a higher oxygen and nitrogen
concentration but the former should not affect creep resistance. Although differences in the
nitrogen concentration are important, they can easily be taken into account both in predicting
carbonitride formation and in the neural network model where nitrogen is an input.

The microstructure of an as—deposited weld metal is naturally radically different from
that of a wrought steel. However, even this is unimportant because of the severe tempering
heat treatments used following the welding procedure, essentially wipe out the original mi-
crostructure and replace it with one which is tempered and similar to that of the steel plate.
It is probably for this reason that the welding process itself is found not to influence the creep
rupture life [12].

The hypothesis can be proved by examining the data on all-weld metal tests in the pub-
lished literature [12], again for a stress rupture life of 10° h. Such data are most reliable for the
QiCrlMo type weld metals; the calculations are therefore presented for the 2%Cr1Mo weld
metal listed in Table 5.

Fig. 9 shows the very encouraging agreement between the calculated [9,10] and measured
[12] creep rupture lives of Q%CrlMo welds. The predictions are made without any adjustment
of the models, which did not interrogate any weld metal data during their creation. The results
confirm that it is reasonable to assume that weld metal creep rupture life can be modelled on
the basis of wrought steels. Of course, other properties such as creep ductility may be more
sensitive to inclusion content in which case the weld metals should exhibit a lower ductility
relative to the wrought steel.



Fig. 7: Creep rupture stress at 600 °C and 100,000 h for 10Cr-0.5Mo type

steel
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STEEL 2XCrMo  10CrMoW
Normalising temperature / K 1203 1338
Duration / h 6 2
Cooling rate water quenched air cooled
Tempering temperature / K 908 1043
Duration / h 6 4
Cooling rate air cooled air cooled
Annealing temperature / K 873 1013
Duration / h 2 4
Cooling rate air cooled air cooled
C wt% 0.15 0.12
Si 0.21 0.05
Mn 0.53 0.64
0.012 0.016
S 0.012 0.001
Cr 2.4 10.61
Mo 1.01 0.44
W 0.01 1.87
Ni 0.14 0.32
Cu 0.16 0.86
\% 0.01 0.21
Nb 0.005 0.01
N 0.0108 0.064
Al 0.018 0.022
B 0.0003 0.0022
Co 0.05 0.015
Ta 0.0003 0.0003
O 0.01 0.01

Table 4: The standard set of input parameters for two alloys used to examine
trends predicted by the neural network. The chemical compositions are all in
wt.%

The method can now be used to generate creep—rupture diagrams such as that illustrated
in Fig. 10.

SELF-DIFFUSION IN IRON

The way in which solutes affect the diffusivity of iron atoms must be of importance in creep
theory. The estimation of these effects is now becoming possible although the significance of
the calculations in the context of design against creep has yet to be established. We discuss
here the methodology for the calculations without commenting on their importance, which is
best determined experimentally. As usual, things are not simple for iron, there is a significant
effect of magnetism which must be taken into account.

Self-diffusion in austenitic iron follows the Arrhenius law (Fig. 11) over the temperature
range 910-1400 °C for which experimental data exist. A comprehensive analysis of the



120

[
[a R
S a0l 100,000 h
~ 100 2.25Cr 1Mo
© BOf .
R
5 60F e -
£ 40 - -. -
g 20 e
[
(5] | | | | |
o500 570 590 B10 630 650
Temperature / °C
o 120 I T T T
D— //
> 100 | .
S~ o7
e} L L [ | i
@ or _!/ ." n "
3 60.- . L — .
2 40 B -
el 100,000 h
o o000 °C 2.25Cr 1Mo
[ O | | | |
010 012 014 016 0.18 0.20
Carbon / wt?%
o 120 T T T T T
a
= 100 F -
S~
°© BOF e
5 goL ™ "'.... -
2
g 40 .
o 100,000 h
& 201 550 °C 2.25Cr 1Mo |
() | | | | |
20 22 24 26 28 3.0
Chromium / wt?
o 120 I T T T
(AN
= 100 F IR
~ N T
L] e T
5 60 " -__,_!.«--*.--"--INM.._H_ " _
e
g 40| .
o 100,000 h
& 201 s50°C 2.25Cr 1Mo |
[ O | | | |
0.7 0.9 1.1 1.3 1.5

Molybdenum / wt?

Fig. 8: Creep rupture stress for 2.25Cr—1Mo type steel



2.25Cr1Mo 9Cr1Mo
wt.% Plate Weld Plate Weld
C 0.110 0.091 0.110 0.090
Mn 0.390 0.590 0.040 0.480
Si 0.290 0.300 0.460 0.500
Cu 0.150 0.024
Ni 0.150 0.033 0.050 0.050
Cr 2.070 2.480 8.960 8.700
Mo 0.900 1.170 0.470 0.980
Nb 0.069 0.040
A% 0.004 0.015 0.200 0.200
S 0.022 0.014
P 0.011 0.010
N 0.005 0.010 0.051 0.040
@) 0.005 0.030 0.005 0.030

Table 5: Chemical compositions, wt%.
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Fig. 9: Calculated (filled circles with error bars) and measured (open circles)

stress rupture data for 2.25Cr1Mo weld metal.
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experimental data by Oikawa [13,14] gave the following estimates for the diffusion parameters:
D= (0.897032) x 107 *exp{—Q/RT} m?s™'  with Q=291.3+45kJmole™" (7)

The activation energyt for diffusion is larger than that of ferrite even though the melting
temperature of austenite is slightly lower than that of ferrite. This is presumably because
austenite is more densely packed than ferrite.
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Fig. 11: Self-diffusion in austenite (data from [15]).

By contrast, the self diffusion data for ferrite show considerable anomalies, both in the
region of paramagnetic to ferromagnetic transition and in the é—ferrite temperature range
Fig. 12 [15,16,17]. The anomaly has been observed also for the diffusion of nickel in ferrite [18]
and in a vast range of other measurements including mechanical properties such as creep at
elevated temperatures.

Borg and Birchenall [16] suggested that both the vacancy formation energy and its ability
to migrate are reduced in the ferromagnetic state. A theory which accounts for the effects in

1 Strictly an enthalpy, since the entropy terms are usually incorporated in the pre—exponentiall}

term. The activation enthalpy ) will therefore be distinguished from the activation free energy
G*.
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terms of pairwise magnetic interactions was proposed by Girifalco [19] and later by Ruch et
al. [20]. For the fully ordered ferromagnetic state, the magnetic interaction energy of an atom
which has N, nearest neighbours is

W = —N_s, (8)

where —s, is the interaction energy per pair of atoms. This equation is based on the reasonable
assumption that only near neighbour terms contribute significantly to W. When a vacancy is
created by removing an atom, N, pairs of contacts are broken, half of which are recreated when
the discarded atom is replaced at the free surface. The enthalpy of formation of a vacancy is
therefore increased by %N .So- A similar argument gives a further contribution to the migration
energy as (N, —N,)s, where N, is the number of nearest neighbours to an atom paired with a
vacancy, and N, the number of nearest neighbours to an atom in its activated state, neglecting
relaxation effects. The value of s, is proportional to the square of the saturation magnetisation
M, {0} at absolute zero. Bearing this is mind, the activation enthalpy for self diffusion becomes

o-afion (0]

where @ is the activation energy when there is no long range magnetic order (i.e. for param-
agnetic ferrite). The constant b; is obtained by fitting to experimental data; it can in principle
be partitioned into two components, one representing the increment (due to magnetic spin
order) in the vacancy formation energy and the other in the migration energy. This is difficult
to do in practice because the calculations require a knowledge of the saddle point configura-
tion during the migration over the activation barrier. The important point is that equation 9
gives a temperature dependence to the activation energy, making it possible to interpret the
deviations from the Arrhenius relationship.

Very precise measurements by lijima et al. [17] confirm the relation over a wide tem-
perature range (766-1148 K), with Q, = 250.6 + 3.8kJmol~!, b, = 0.156 + 0.003 and the
pre-exponential factor in the Arrhenius equation given by D, = (2.76 7]53) x 10™*m?s™!
(Fig. 12). The temperature dependence of the self diffusion coefficient apparently shows the
normal Arrhenius relationship above the Curie temperature. Magnetisation data are necessary
to use this diffusion model; these have been reported, for example, by Potter [21] and Crangle
and Goodman [22].



There are two further issues which need to be considered. Firstly, early research had
indicated that the diffusion anomaly extends to temperatures beyond the Curie temperature,
which would be inconsistent with a theory which relies on just the the long—range magnetic—
order parameter since the magnetisation terms then tends to zero towards 7T,. Modern high
precision measurements on well prepared samples do not reveal anomalous effects beyond 7.,.

Secondly, measurements for 6—ferrite at very high temperatures do not fit the extrapolated
data for paramagnetic a—ferrite (Fig. 13). Instead, for é—ferrite it is found that D, = 9.21 x
1073 m?s~! with a higher activation energy of Q = 296kJ mol~!. It has been postulated that at
high temperatures diffusion by a divacancy mechanism makes a contribution which is additional
to that from the usual monovacancy mechanism [17], though an alternative explanation is that
the neglect of short-range order effects near 7, gives an error in the slope of the Arrhenius
plot for much higher temperatures. Nevertheless, the precision of the measurements made by
lijima and co—workers casts some doubt on whether a diffusion anomaly exists for 7" > T..
Similar observations have been reported for the self-diffusion in cubic close-packed cobalt,
where the diffusion anomaly is very small indeed when compared with iron. In spite of this,
the Arrhenius plot curves upwards as the melting temperature is approached, supporting the
hypothesis of an increasing contribution from the divacancy mechanism [23]. The estimated
values of the diffusion parameters for self—diffusion by the divacancy mechanism in ferrite are:
_406,000} 2l

(10)

D2’U =5.2 exp{ T

where the units of the activation energy are in Jmol~!. This makes D, about half D at the
melting temperature.
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Fig. 13: Self-diffusion coefficient of iron in 0— ferrite [17]. The v — 6

transformation occurs at 1665 K and melting at 1811 K.

Short-range magnetic order persists to temperatures well in excess of the Curie temper-
ature. A number of models have been proposed which account for short-range order effects



and at the same time allow é—ferrite and paramagnetic a—ferrite to be treated identically. The
models do involve a larger number of fitting parameters. In addition they do not seem to
explain why the diffusion anomaly vanishes at 7/T, ~ 1.16, whereas the short range order
parameter remains significant to even higher temperatures (Fig. 14).

To cope with this latter difficulty, Kucera [24] defined a fictitious paramagnetic temper-
ature (7, > T,) beyond which there is no measurable effect on diffusion of (short-range)
magnetisation with

Q=Qu(1+¢{T}) (11)

with the complicated function ¢{7'} being such that contributions from long-range order go
to zero at T, and those from short range order become zero at T),. Zener [25] argued for a
temperature dependent activation free energy because an atom during its course of migration
strains the surrounding lattice, and the resistance of the lattice to such deformation changes
with temperature. He further suggested that the temperature coefficient of the ratio G* /G
should therefore be the same as that of the shear moduli p,/p, where in each case the sub-
scripts indicate the value at "= 0. Any temperature dependence of the activation free energy
can be incorporated into the pre—exponential term in the diffusion coefficient via the activation
entropy, the change in which becomes:

o by d(pe/12)
AS" = T T, "

where T, is the melting temperature and b, is a fitted constant. Since the shear modulus also
depends on the magnetic state, Kucera incorporated the function ¢{7'} in the pre—exponential

factor as well: 035¢(T}Q 0
_ 999 0 __x
D =D, exp{ R }exp{ RT} (13)

08f

06

04

02

Magnetic order parameter

0.0 . ) . .
00 02 04 06 038 1.0 1.2

Reduced temperature

Fig. 14: The calculated long range and short range magnetic order param-
eters for bee iron [24]. The reduced temperature is the ratio of the absolute

temperature to the Curie temperature.

Other models have involved empirical modifications of the Kucera approach, for example
by substitution of the excess enthalpy attributed to the magnetic effect for the function ¢{7T'}
whilst retaining the same form as equation 13 [26], or by explicitly including the shear moduli



in the calculations [27,28]. Some models include two additional terms in the activation energy
function, one containing the variation in the long range order parameter and the other the
variation in the elastic modulus ([28,29]. Jonsson [30] pointed out that these models are
difficult to distinguish as empirical representations because the excess enthalpy and elastic
modulus vary in a similar manner with the temperature. Neither the excess enthalpy nor the
difference in shear moduli between the ferromagnetic and paramagnetic states reach zero at
the temperature where the diffusion anomalies vanish.

Bearing in mind that enthalpy data are more frequent than modulus data for alloys,
Jonsson adapted Braun and Feller—Kniepmeier’s method where the diffusion anomaly is ex-
pressed purely as a function of the excess enthalpy, so that in equation 13 the function ¢

becomes
T} =b; "AH{T}

where bs is a fitting constant and ™IAH{T'} is the excess magnetic enthalpy at the temperature
T. Equation 13 contains the melting temperature whose meaning in the context of diffusion is
not clear for an alloy where melting occurs over a range of temperatures. However, there is a
well known empirical relationship between the activation energy for diffusion and the melting
temperature of a pure metal,

Q,=1407,,  Jmol™*

so that the melting temperature can be eliminated from equation 13. By fitting the equation
to ferritic iron, Jonsson was able to demonstrate that with appropriate thermodynamic data
for ™A HT, he was able to estimate fairly well the tracer diffusion of elements such as cobalt,
nickel in ferrite both in the ferromagnetic and paramagnetic regions. The activation energy and
D, for the paramagnetic state derived by fitting in each case but b, was kept fixed, assumed
to depend only on the lattice geometry.

To summarise, it is possible, when the thermodynamic data necessary for the estimation
of MMAH{T} are available, to calculate the effect of solute elements on the tracer diffusion
coefficient of iron. It will be interesting to see how such information can be exploited in the
design of creep—resistant steels.

CONCLUSIONS

It is now possible to attempt a quantitative design of heat resistant steels and welding
alloys. This is true both with respect to the kinetics of microstructural evolution and in the
estimation of creep rupture strength. The combined models provide for the first time an
ability to predict new alloys. It would now be interesting for industry to set some challenges,
which would stimulate theoretical predictions and finally experimental verification. The whole
process from the conception of an alloy to its verification should take much less time than has
previously been the case.

In the longer term it is necessary for the microstructure models to predict particle size
and spatial distributions, and the effect of stress and strain on transformation kinetics. Such
information can then be used in a more sophisticated mechanical model, perhaps based on
dislocation and recovery theory.
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