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ABSTRACT

Body—centered cubic iron undergoes a ductile-brittle fracture transition as a function of
temperature. A common way of describing the Charpy toughness is to measure the temperature
T; corresponding to a particular value of absorbed energy. Extensive data on variations in T';
as a function of the microstructure and weld metal composition have recently been published
along with a linear regression analysis. In the present work we show that it is possible to infer
more meaning from the data by using a neural network (non-linear regression) analysis.

INTRODUCTION

The Charpy toughness of a steel weld is one of the important quality control parameters,
widely specified in industry and used as a ranking parameter in consumable research and
development programmes. Body—centered cubic iron undergoes a ductile-brittle transition as
the test temperature is reduced. Consistent with international norms, the toughness is therefore
frequently characterised by a transition temperature corresponding to a particular value of the
absorbed impact energy. In a recent paper, French [1] conducted a careful series of experiments
in which the temperature T,,; corresponding to a measured Charpy impact energy of 27 J was
characterised as a function of the yield strength, oxygen content and the microstructure. The
latter included the fraction of acicular ferrite in the as—deposited microstructure, but since the
work was done on multipass welds, an overall percentage of reheated microstructure was also
measured. Three different welding processes were used: flux—cored arc welding (FCAW), gas
metal arc welding (GMAW) and manual metal arc welding (MMAW).

The resulting data were analysed using linear regression as follows:

Ty, = 0.007(Y'S) + 550(0) + 0.034(R) — 0.31(AF) —74  °C (1)

where Y'S is the yield strength in MPa, (O) is the concentration of oxygen in wt%, and the
reheated microstructure (R) and acicular ferrite (AF') are as area percentages. The range of
applicability of the equation can be gauged from Table 1, which contains information from 59
separate measurements.

The analysis indicated a standard error of £12°C, with a correlation coefficient of 0.78.
It is possible that a better interpretation of the data and associated uncertainties can be
obtained using a non-linear regression method, which does not have an a priori assumption
of the relationship between the variables, which accounts for the interactions between the
variables, and which comments not only in the perceived level of noise in the output, but also
on how the uncertainty of fitting depends on the particular region of input space where the
prediction is being made. We begin with a brief introduction to the method of neural network
analysis [2,3].



Input element Minimum | Maximum | Mean | Standard Deviation
Yield Strength (MPa) 360 630 516 55
Oxygen (wt%) 0.03 0.12 0.06 0.02
Reheated Material (%) 20 79 41 13
Acicular Ferrite (%) 5 86 54 15
Temperature at 27J (°C) | -88.0 -13 -54 18

Table 1: Characteristics of the measured parameters in the experiments con-
ducted by French [1].

THE METHOD

A neural network is a general method of regression analysis in which a flexible non—linear
function is fitted to experimental data, the details of which have been extensively reviewed [2].
It is, nevertheless, useful to present some salient features in order to place the technique in
context.

The flexibility of the non—linear function scales with the number of hidden nodes i. Thus,
the dependent variable y is given in the present work by

y=> wh;+0 2)

where

h; = tanh (Z ngl-)wj + 01(1))

J

where z; are the j variables on which the output y depends, w; are the weights (coefficients) and
0, are the biases (equivalent to the constants in linear regression analysis). The combination of
equation 2 with a set of weights, biases, value of ¢ and the minimum and maximum values of
the input variables defines the network completely. Notice that the complexity of the function
is related to the number of hidden units. The availability of a sufficiently complex and flexible
function means that the analysis is not as restricted as in linear regression where the form of
the equation has to be defined explicitly before the analysis.

The neural network can capture interactions between the inputs because the hidden units
are nonlinear. The nature of these interactions is implicit in the values of the weights, but
the weights may not always be easy to interpret. For example, there may exist more than
just pairwise interactions, in which case the problem becomes difficult to visualise from an
examination of the weights. A better method is to actually use the network to make predictions
and to see how these depend on various combinations of inputs.

FError Estimates

The input parameters are generally assumed in the analysis to be precise and it is normal
to calculate an overall error by comparing the predicted values (yj) of the output against those
measured (;), for example,

Ep x Z(tj - yj)2 (3)

E, is expected to increase if important input variables have been excluded from the analysis.
Whereas F, gives an overall perceived level of noise in the output parameter, it is, on its own,
an unsatisfying description of the uncertainties of prediction.
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MacKay has developed a particularly useful treatment of neural networks in a Bayesian
framework [2], which allows the calculation of error bars representing the uncertainty in the
fitting parameters. The method recognises that there are many functions which can be fitted
or extrapolated into uncertain regions of the input space, without unduly compromising the
fit in adjacent regions which are rich in accurate data. Instead of calculating a unique set of
weights, a probability distribution of sets of weights is used to define the fitting uncertainty.
The error bars therefore become large when data are sparse or locally noisy [3].

The error bars presented throughout this work therefore represent a combination of the
perceived level of noise in the output (7}, ;) and the fitting uncertainty as described above.

QOverfitting

A potential difficulty with the use of powerful non—linear regression methods is the pos-
sibility of overfitting data. To avoid this, the experimental data can be divided into two sets,
a training dataset and a test dataset. The model is produced using only the training data.
The test data are then used to check that the model behaves itself when presented with previ-
ously unseen data. The training error tends to decrease continuously as the model complexity
increases. It is the minimum in the test error which enables that model to be chosen which
generalises best on unseen data [2].

The discussion of overfitting is rather brief because the problem does not simply involve
the minimisation of test error. There are other parameters which control the complexity, which
are adjusted automatically to try to achieve the right complexity of model [2].

THE ANALYSIS

The aim of the neural network in this case was to predict T, ; as a function of the variables
shown in Table 1. All the input variables and the output were normalised within the range
+0.5 as follows:

Ty = T T Pmin 0.5

Linar — Tmin

where z is the original value from the database, z,,,, and z,,,,, are the respective maximum
and minimum of each variable in the original data and z  is the normalised value. This step is
not essential to the running of the neural network but later allows a convenient way to compare
the results of the output.

For several runs of the neural network, Fig. 1 shows the model perceived noise o, in T}, ;. It
is very interesting that the level of noise in the normalised output parameter T5,, ;, as perceived
by the network, is ~ 0.15 — 0.18. This amounts to +11 — 14°C, which compares favorably
with the £12°C deduced in by French using linear regression analysis. It is also worth noting
that the error, irrespective of the model, is quite large when considering the physical meaning
of Ty, ;. Furthermore, one standard error corresponds to a 68% confidence limit whereas two
standard errors give the more acceptable 95% error bound. The important point is that the
noise level is not reduced by using a non-linear analysis, giving evidence that the problem
is not well specified; there are missing variables which clearly affect the toughness. We shall
not speculate on what these missing variables could be, but factors such as the hydrogen and
nitrogen concentrations, the scale of the microstructure etc. come to mind. Note also that the
nature of the welding process is not explicitly taken into account.

Fig. 2 shows the predictions for the training and test data for the best model identified
as the one with the highest log predictive error [2]. It is clear that the model is reasonably
well behaved in the sense that the test data are predicted to a similar level of accuracy as the
training data. It is important to note that the error bars plotted in Fig. 2a,b do not include o,
but only the fitting error which depends on the position in the input space. Fig. 2¢, shows the
corresponding plot for the test data where the error bars contain both the o, and the fitting
error. All subsequent plots also include both components since it is logical to consider both the
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perceived level of noise in the output and the fitting error. As will be seen subsequently, the
latter is particularly important when extrapolating or interpolating, since large fitting errors
are calculated in regions where the experimental knowledge is sparse or noisy.

It is possible that a committee of models can make a more reliable prediction than an
individual model [2]. The best models are ranked using the values of the test errors. Commit-
tees are then formed by combining the predictions of the best L models, where L = 1,2,...;
the size of the committee is therefore given by the value of L. A plot of the test error of the
committee versus its size gives a minimum which defines the optimum size of the committee,
as shown in Fig. 3.

The test error associated with the best single model is clearly greater than that of any
of the other committees. It was determined in this case that a committee of thirteen models
would be the best choice, being the committee of the lowest test error. The committee was
then retrained on the entire data set without changing the complexity of any of its members.

The predictions of the committee trained on the entire data set can be compared with the
original dataset as shown in Fig. 4.

Another parameter, o,, indicates the importance of an input in terms of its variation
having an effect on the output of the model. Fig. 5 compares the values of o,, for each of the
inputs for the thirteen models in committee. A high value of o, for a specific input can be
caused by the corresponding variable inducing a large variation in the output, but it can be
seen from Fig. 5 that different models can assign varying significance to the same input. This
is one of the reasons why a committee of models can be more reliable than the single model
judged to be best on the basis of a parameter such as o,,.

USE OF THE MODEL

It is worth illustrating a few predictions, to emphasise the point that the error bars will not
be constant as in [1]. It is important to note that as in equation 1, the predictions are for the
case where just one input variable is altered, keeping all other fixed. This may not be possible
when conducting experiments, the variables used for analysis were shown in Table 2. Fig. 6a
shows that T),,; increases with the oxygen concentration; this is expected since the oxygen
is inevitably present in the form of oxide inclusions which, for a constant microstructure, are
detrimental to toughness.

It is not surprising that Fig. 6b shows that acicular ferrite improves the toughness. How-
ever, the neural network model shows that the results are not certain at large fractions of
acicular ferrite when all the other variables are kept constant.

Input element

Yield Strength (MPa) 516
Oxygen (wt%) 0.042
Reheated Material (%) 40

Acicular Ferrite (%) 63

Table 2: Input parameters used for the predictions. These correspond to a
FCAW weld studied in [1].

Fig. 7 shows contour plots of T,;; as a function of the acicular ferrite and oxygen con-
centrations. A simple interpretation of the linear regression model (Fig. 7b) indicates that for
optimum toughness, the acicular ferrite must be maximised at a zero oxygen concentration.
However, there are no weld in the dataset with zero oxygen concentration and such a sugges-
tion is probably not justified since oxides are needed to nucleate acicular ferrite. The neural
network analysis, on the other hand, correctly indicates an optimum combination of acicular
ferrite and oxygen concentration.
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Fig. 1 Variation in 0, as a function of the number of hidden units. Several
values are presented for each set of hidden units because the training for each

network started with a variety of random seeds.

SUMMARY

An important conclusion from this work is that the use of non-linear regression analysis
in the form of a neural network does not reduce the rather large perceived level of noise in the
measured values of T,, ;. This is expected with hindsight, since there are many more variables
which control toughness when compared with the restricted set studied.

The second conclusion is that the standard error quoted for the linear regression model
must be regarded as an underestimate of the real uncertainty, since there will be regions of
the input space where the fitting function itself has great uncertainty. This is relevant in both
extrapolation and interpolation.

Finally, even though the non-linear model does not help in reducing the perceived noise
in the output, it is clear that the dependence of T, ; on a particular variable is a function of
all the other input parameters. Therefore, unlike linear regression analysis, the neural network
correctly predicts that there is a combination of acicular ferrite and oxygen which optimises
toughness.

In a further comparison between neural networks and linear regression analysis, the latter
it becomes clear that has the advantage of simplicity. However, neural network calculations
can be done easily on a popular computer. The software capable of doing these calculations
can be obtained freely from

http : | Jwww.msm.cam.ac.uk/map/mapmain.html
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Fig. 6 Calculations as a function of the oxygen and acicular ferrite contents.
In each case, the values of the remaining input variables are as listed in Table 2.
The open circles with error bars are represent neural network model predictions

whereas the filled circles are from equation (1).
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