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There are difficult problems in materials science where the generai concepts might be understood but
which are not as yet amenableto scientific treatment. Weare at the sametime told that good engineering
has the responsibility to reach objectives in a cost and time-effective way. Any model which deals with
only a smali part of the required technology is therefore unlikely to be treated with respect. Neural network
analysis is a form of regression or classification modelling which can help resolve these difficulties whilst
striving for longer term solutions. This paper begins with an introduction to neural networks and contains

a review of someapp]ications of the technique in the context of materia]s science.
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1. Introduction

The development and processing of materials is

complex. Although scientific investigations on materials
have helped greatly in understanding the underlying
phenomena,there remain manyproblems where quan-
titative treatments are dismally lacking. For example,
whereas dislocation theory can be used to estimate the
yield strength of a microstructure, it is not yet possible
to predict the strain hardening coefficient of an engi-
neering alloy. It follows that the tensile strength,
elongation, fatigue life, creep life and toughness, all of
which are vital engineering design parameters, cannot
even be estimated using dislocation theory. A more
comprehensive list of what needs to be done in this

context is presented in Table 1.

The lack of progress in predicting mechanical prop-
erties is because of their dependenceon large num-
bers of variables, Nevertheless, there are clear patterns
which experienced metallurgists recognise and under-
stand. For example, it is well understood that the tough-
ness of a steel can be improved by making its micro-
structure more chaotic so that propagating cracks are
frequently deflected. It is not clear exactly howmuch
the toughness is expected to improve, but the qualitative
relationship is well established on the basis of a vast
numberof experiments.

NeLu'a] network models are extremely useful in such
circumstances, not only in the study of mechanical
properties but wherever the complexity of the problem
is overwhelming from a fundamental perspective and
where simplification is unacceptable. The purpose of
this review is to explain how vague ideas might be
incorporated into quantitative models using the neural
network methodology. Webegin with an introduction
to the method, followed by a review of its application

to materials.

2. Physical and Empirical Models

A good theory must satisfy at least two criteria. It

must describe a large class of observations with few
arbitrary parameters. Andsecondly, it must makepre-
dictions which can be verified or disproved. Physical
models, such as the crystallographic theory of martens-
ite,1'2) satisfy both of these requirements. Thus, it is

possible to predict the habit plane, orientation rela-

tionship and shape deformation of martensite with a
precision greater than that of most experimental tech-
niques, from a knowledge of just the crystal structures
of the parent and product phases. By contrast, a linear
regression equation requires at least as manyparame-

Table l. Mechanical properties that need to be expressed
in quantitative models as a function of large

numbersof variables.

Property

Yleld strength

Ultimate tenslle strength

YS/UTSratio

Elongation

Uniform elongation

Non-uniform elongation

Toughness

Fatigue

Stress corroslon

Creep st,rength

Creep ductlllty

Creep-f atigue

Elastic modulus

Thermal expansivity

Hardncss

Relevance

All structural applications

All structural applications

Tolerance to plastic overload

Reslstance to brittle fracture

~elated to YSand UTS
Related to inclusions

Tolerance to defects

Cyclic loading, Iife assessments

Slow corrosion &cracking

Hlgh temperature service

Safe design

Fatigue at creep temperatures

Deflection, stored energy

Thermal fatigue/strcss/shock

Tribological propertics
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ters as the numberof variables to describe the experi-

mental data, and the equation itself maynot be physi-
cally justified. Neural networks fall in this second cat-

egory of empirical models; we shall see that they have
considerable advantages over linear regression. In spite

of the large numberof parameters usually necessary to
define a trained network, they are useful in circumstances
where physical models do not exist.

3. Linear Regression

Most scientists are familiar with regression analysis

wheredata are best-fitted to a specified relationship which
is usually linear. The result is an equation in which each
of the inputs xj is multiplied by a weight wj; the sumof
all such products and a constant ethen gives an estimate
of the output y=~jwjxj +e. As an example, the tem-
perature at which the bainite reaction starts (i.e. Bs) in

steel maybe written3)'

Bs('C) =
830 - 270x cc ~90x cM*- 37 x cNi - 70 x cc* ~83 x cM~

o ,*,c *+'~* }*'~**+,''+*,""

.(1)

where ci is the wto/o of element i which is in solid so-
lution in austenite. The term wi is then the best-fit value
of the weight by which the concentration is multiplied;

eis a constant. Becausethe variables are assumedto be
independent, this equation can be stated to apply for the
concentration range:

Carbon O.1-0.55wt"/o Nickel 0.0-5.0
Silicon O. I-O. 35 Chromium O.0-3

. 5
Manganese 0.21.7 Molybdenum 0.0-1.0

and for this range the bainite-start temperature can be
estimated with 90 o/* confidence to + 25'C.

Equation (1) assumesthat there is a linear dependence
of Bs on concentration.* It mayalso be argued that there
is an interaction betweencarbon and molybdenumsince

the latter is a strong carbide forming element. This can
be expressed by introducing an additional term as fol-

lows:

Bs'C=830- 270 x cc~90 x cM~- 37 x cNi - 70 > cc.

- 83 x cM.+22 x (cc X cM~)
.(2)

interaction

Of course, there is no justification for the choice of the

particular form of relationship. This andother difficulties

associated with ordinary linear regression analysis can
be summarisedas follows:

Difficulty (a) A relationship has to be chosen before
analysis.

Difficulty (b) The relationship chosen tends to be
linear, or with non-linear terms added
together to form a psued0-1inear equa-
tion.

Difficulty (c) The regression equation, once derived,
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Fig. 1. (a) A neulal network representation of linear re-

gression. (b) A non-linear network representation.

applies across the entire span of the
input space. This maynot be reasona-
ble. For example, the relationship be-

tween strength and the carbon con-
centration of an iron-base alloy must
change radically as steel gives way to

cast iron.

4. Neural Networks

A general method of regression which avoids these
difficulties is neural network analysis, illustrated at first

using the familiar linear regression method. A network
representation of linear regression is illustrated in Fig.
l(a). The inputs xi (concentrations) define the input
nodes, the bainite-start temperature the output node.
Each input is multiplied by a randomweight wi and the
products are summedtogether with a constant eto give
the output y=~iT4;ixi+0. The summation is an op-
eration which is hidden at the hidden node. Since the

weights and the constant Owere chosen at random, the
value of the output will not match with experimental
data. The weights are systematically changed until a
best-fit description of the output is obtained as a function
of the inputs; this operation is knownas training the

network.
Thenetwork can be madenon-linear as shownin Fig.

l(b). Asbefore, the input data xj are multiplied by weights
(w(1)), but the sum of all these products forms the

argument of a hyperbolic tangent:

(h=tanh~~, w(1)xJ+e =with y w(2)h+0(2) (3)

where T4'(2) is a weight and O(2) another constant. The
strength of the hyperbolic tangent transfer function is

determined by the weight T4'j. The output y is therefore

a non-linear function of xj, the function usually chosen
being the hyperbolic tangent because of its flexibility.

Theexact shape of the hyperbolic tangent can be varied

by altering the weights (Fig. 2(a)). Difficulty (c) is avoided
because the hyperb•olic function varies with position in

the input space.

A one hidden-unit model maynot however be suffi-

* In this particular case, a physical model exists which proves that the dependenceon concentration is not linear4). In general, blind models such

as linear regression or neural network analysis are only used whenphysical models are not available or whenthe latter are tedious to apply.
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Fig. 2. (a) Three different hyperbolic tangent functions; the

"strength" of each depends on the weights. (b) A
combination of two hyperbolic tangents to produce a
morecomplex model.
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Fig. 4.

8 Complexity of model

Variations in the test and training errors as a function of modelcomplexity, for noisy data in a case wherey
should vary with x3. The filled points were used to create the models (i.e, they represent training data), and
the circles constitute the test data. (a) A Iinear function which is too simple. (b) Acubic polynomial with

optimumrepresentation of both the training and test data. (c) A fifth order polynomial which generalises

poorly. (d) Schematic illustration of the variation in the test and training errors as a function of the model
complexity.

ciently fiexible. Further degrees of non-linearlty can be
introduced by combining several of the hyperbolic

tangents (Fig. 2(b)), permitting the neural network
method to capture almost arbltrarily non-linear rela-

tionships. The numberof tanh functions is the number
of hidden Lmits; the structure of a two hidden unit

network is shownin Fig. 3.

The function for a network with i hidden units is

given by

y" =~T,,
(2)h +e(2) ..........(4)

where

~ '

(J
J s

hi= tanh lv(~)
)c +e(i)

iJ
.(5)

Notice that the complexity of the function is related to

the numberof hidden units. The availability of a suf-

ficiently complex and fiexible function meansthat the

analysis is not as restricted as in linear regression where

the form of the equation has to be specified before the
analysis.

The neural network can capture interactions between
the inputs because the hidden units are nonlinear. The
nature of these interactions is implicit in the values of
the weights, but the weights maynot always be easy to
interpret. For example, there mayexist more than just

pairwise interactions, in which case the problem becomes
difficult to visualise from an examination of the weights.

Abetter methodis to actually use the network to make
predictions and to see how these depend on various

combinations of inputs.

5. Overfitting

A potential difficulty with the use of powerful non-
linear regression methods is the possibility of overfitting

data. To avoid this difficulty, the experimental data

can be divided into two sets, a training dataset and

a test dataset. The model is produced using only the

training data. The test data are then used to check that
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the model behaves itself whenpresented with previous-
ly unseendata. This is illustrated in Fig. 4. which shows
three attempts at modelling noisy data for a case where

y should vary with x3. A Ilnear model (Fig. 4(a)) is too
simple and does not capture the real complexity in the

data. An overcomplex function such as that lllustrated

in Fig. 4(c) accurately models the training data but gen-
eralises badly. The optimummodel is illustrated in Fig.

4(b). The training and test errors are shownschemati-
cally in Fig. 4(d); not surprlsingly, the training error
tends to decrease continuously as the model complexity
increases. It is the minimumin the test error which
enables that model to be chosen which generaiises best

to unseen data.

This discussion of overfitting is rather brief because
the problem does not simply involve the minimisation
of test error. There are other parameters which control
the complexity, which are adjusted automatically to try

to achieve the rlght complexlty of model.s,6)

Error Estimates
The input parameters are generally assumedin the

analysis to be precise and it is normal to calculate an
overall error by comparing the predicted values Cyj) of
the output against those measured(tj), for example,

EDCC~(tj-yj)2
.........

..........(6)

EDis expected to Increase if important input variables

have beenexcluded from the analysis. WhereasEDgives

an overall perceived level of noise in the output pa-
rameter, it is, on its own, an unsatisfying description of
the uncertainties of prediction. Figure 5 illustrates the

problem; the practice of using the best-fit function (i.e.

the most probable values of the weights) does not
adequately describe the uncertainties in regions of the

input space wheredata are sparse (B), or where the data

are noisy (A).

MacKayhas developed a particularly useful treatment
of neural networks in a Bayesian framework,5,6) which
allows the calculation of error bars representing the

uncertainty in the fitting parameters. The method rec-

ognises that there are many functions which can be
fitted or extrapolated into uncertain regions of the input

space, wlthout unduly compromising the fit in adjacent
reglons which are rich in accurate data. Instead of
calculating a unique set of weights, a probability dis-

tribution of sets of weights is used to define the fitting

uncertainty. The error bars therefore become large

whendata are sparse or locally noisy, as illustrated in

Fig. 5.

This methodology has proved to be extremely useful

in materials science whereproperties need to be estimated

as a function of a vast array of inputs. It is then most
unlikely that the inputs are uniformly distributed in the

input space.

6. Miscellany

Neural networks are often associated with the working
of the humanbrain or with artificial intelligence. This
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Fig. 5. Schematic illustration of the uncertainty in defining a

fitting function in regions wheredata are sparse (B) or
where they are noisy (A). The thinner lines represent

error bounds due to uncertainties in determining the

weights.

can be misleading:
(1) The neural network method described here can

be expressed as an equation which is precise and
which is precisely reproducible for a given set of
inputs. It is a regression method of which linear

regression is a subset. Onehas to use the con-
siderable imagination to see in this a connec-
tion with "intelligence" or with the working of
the brain.

(2) The method is sometimes incorrectly described as

a "black box" technlque.7) On the contrary, it is

transparent, consisting of an equation and associ-

ated coefficients (the weights). Both the equation
and the weights can be studied to reveal rela-

tionships and interactions.

Wenowproceed to discuss specific applications of neural
networks in the context of materials. There are some
general principles which emerge; these are emphasisedin

narrow paragraphs.

7. Welding

We]ding has seen major applications of the neural
network method. Examplesinclude: weld seamtracking

where the oLutput from sensors is interpreted by a trained

network to control a welding robot8); the interpretation

of sensor information measuredduring welding to de-

termine weld quality9'10); the detection of defects in

welds using ultrasonic, radiation or other signalsll ~ 19)'

the estimation of weld profile (including penetration)

from varlations in welding parameters or other sensed

parameters. 20 - 27)

Theuse of neural networks is therefore well established
in the control and monitoring of welds. Weshall focus
here on specific applications of greatest interest in

materials science. There are other papers in the present
issue of ISIJ Intel'national, which are not discussed
here.

Charpy Toughnessof Steel WeldMetal
The concept of toughness as a measureof the energy

absorbed durlng fracture is weli-developed.28,29) It is

often measuredusing notched-bar impact tests of which
the most commonis the Charpy test. A square section

notched bar is fractured under specified conditions and
the energy absorbedduring fracture is taken as a measure

C 1999 ISIJ
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Fig. 6. Bar chart showing a measureof the model-perceived
significance of eachof the input variables in influencing

toughness.30].

of toughness. The Charpy test is empirical in that the

data cannot be used directly in engineering design. It

does not provide the most searching mechanical con-
ditions. The sample has a notch, but this is less than
the atomically sharp brittle crack. Although the test

involves impact loading, there is a requirement to start

a brittle crack from rest at the tip of the notch, suggest-
ing that the test is optimistic in its comparison against a
propagating brittle crack.29) Most materials can be as-

sumedto contain sub-critical cracks so that the initia-

tion of a crack seemsseldom to be an issuc.

The Charpy test is nevertheless a vital quality con-
trol measurewhich is specified widely in international

standards, and in the ranking of samples in research

and development exercises. It is the most commonfirst

assessmentof toughness and in this sense has a proven
record of reliability. The test is usually carried out at a
variety of temperatures in order to characterlse the
ductilebrittle transition intrinsic to body-centred cubic
metals with their large Peierls barriers to dislocation

motion.
The toughness of ferritic steel welds has been studied

using neural networks.30) The Charpy toughness was
expressed as a function of the welding process (manual
metal arc or submergedarc), the chemical composition
(C, Mn, Si. Al, P, S, O&N), the test temperature and
the microstructure (primary, secondary, allotriomorphic
ferrite, Widmanstatten ferrite, and acicular ferrite). The
inclusion of microstructure greatly limited the quantity
of data available for analysis because few such results

are reported in the literature. Nevertheless, the aim of
the analysis was to see if the network recognised known
trends in toughness as a function of the microstructure.

Thewelding process wasnumerically distinguished in the
analysis by using Oand I for the manualand submerged
arc methods.

Figure 6Illustrates the significance ((T~) of each of the
input variables, as perceived by the neural network, in

influencing the toughness of the weld. As expected, the

welding-process has its ownlarge effect; it is well known
that submerged arc welds are in general of a lower
quality than manua]metal arc welds. The yield strength

has a major effect; it is knownthat an increase in the
yield strength frequently leads to a deterioration in the

toughness. It is also widely believed, as seen in Fig. 6,
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O 500 1000
Oxygen/ p.p,m.

Variation in the normalised toughness as a function
of the oxygen concentration. Oxygen is varied here

without changing any of the other inputs. The max-
imumoxygen concentration in the training data was
821 p,p.m.
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that acicular ferrite greatly infiuences toughness, Ni-

trogen has a large effect, as is well estab]ished experi-

mentally.

A trained neural network is assoclated with reveal-

ing parameters other than just the transfer function
and weights. For example, the extent to which each
input explains variations in the output parameter
can easily be examined.

It is surprising that carbon has such a small effect

(Fig. 6), but what the results really demonstrate is that

the influence of carbon comesin via the strength and
microstructure. Other trends have been discussed in Ref.
30).

OxygenInfluences welds in both beneficial andharmful

ways, e.g. by helping the nucleation of acicular ferrite

or contributing to fracture by nucleating oxides. The
predicted effect of oxygen concentration is illustrated in

Fig. 7a]ong with the ~I standard deviation predicted

error bars. It is clear that extrapolation into regions where
data are sparse or noisy is identified with large error bars.

The training data used for the toughness model had a
maximumoxygenconcentration of 821parts per million.

Neural network models which indicate appropri-
ately large error bars in regions of the input space
where the fitting is uncertain are less dangerous in

applications than those which simply identify a
global level of noise in the output.

Figure 8showshowthe toughness varies as a function
of the manganeseconcentration and the test temperature,
It is obvious that the effect of temperature is smaller at

large concentrations of manganese, i,e, there is an
interaction between the manganeseand temperature.
Thls interaction has been recognlsed naturally by the

model and is expected from a metallurgical point of
view,30)
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Neural networks deduce the relationship between
variables, including any interactions. In complex
cases involving manyvariables, the interactions

are revealed both qualitatively and quantitatively

by exarnining the predictions, as illustrated in Fig. 8.

Analyses carried out without an examination of the

consequenceshave tended to lead to the incorrect con-
clusion that the neural network method lacks trans-

parency. For example, Chanet al.3 i) created a model for

the hardness of the heat affected zone of steel welds as

a function of the carbon concentration, the carbon-
equivalent and the cooling rate within a specified tem-
perature range. Having produced the model, they did not
continue to study how the hardness depends on each
of the input parameters, whether the relationship differs
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for low and high carbon steels, etc.

The toughness model described above30) js revealing
but nevertheless, Impractical for routine use because the
inputs include the microstructure, which can be difficult

to predict or measure. This can be resolved by eliminating
the microstructural inputs and including the welding
conditions (current, voltage, speed, interpass tempera-
ture, arc efficiency) which determine the cooling rate of
the weld. Themicrostructure is a function of the cooling
rate and chemical composition (both easy to measure)
so it does not have to be included explicitly.

For practical applications, the most useful neural
network models are those whoseinputs are easily

measured, perhaps as a part of the quality control

process. Onthe other hand, it maybe revealing to

use inputs which are related directly to the output
parameter, so that mechanisms are revealed.

0.6

0,4
Strength of Steel Welds

The tensile strength of a weld metal is frequently set
0.2 higher than that of the corresponding base metal.32) It' 0,5Mn

o.o mayalso be necessary to maintain a significant difference

between the yieid and ultimate tensile strengths in order
-0.2

to ensure considerable plasticity before failure, and to• 2,0Mn

-0.4 resist the growth of fatigue cracks. Svensson32) has

-O 6
compiled an extensive list of linear regression.equations

200 220 for estimating the strength as a function of the weld240 260 280 300
Temperature / K metal chemical composition. Theequations are limited to

8. Variation in the normalised toughness as a function
specific alloy systemsandcover nomorethan five alloying

of the manganeseconcentration and the test tem- elements. There is no facility for estimating the effect of
perature. heat treatments.

Table 2. The variables used in the analysis ofstrength. The abbreviation

p.p.m,w, stands for parts per million by weight, Notice that this

table cannot be used to define the range over which a neural

network might be expected to give safe predictions.

Variable Range Mean Standard

Deviation

Carbonweight 9~o o029-0. 16 o074 o024

Silicon weight % O040-1. 14 O34 O124

Manganeseweight 9;~o O.27-2 .
25 1.20 o39

Sulphur weight 9~o oOOl-O.14 o0097 0.0069

Phosphorusweight % o. 004o.25 0.013 OOll

Nickel weight % oo0-3 50 0.22 o63

Chromiumweight % oo0-9 35 o734 207

Molybdenumweight ~a OO0-l 50 0,17 o35

Vanadiumweight % oo0-0 24 0.018 0,049

Copperweight 9~o o.O0-1 .63 o074 0.224

Cobalt weight % oo0-2 80 OOll O. 147

Tungsten weight % o. o0-2. 99 0.0115 O. 146

Titanium p p m w. o690 40.86 79.9

Boron p p. m w. o69 l 17 578

Niobium p,p m w 0-lOOO 57.4 151

Oxygenp. p, m. w, 132-1650 441 152

Heat Input kJ -lmm o. 67 9 l 85 l.47

Interpass Temperature o~ 20-300 207 7 48,g3

TemperingTemperature oC 0-760 320.4 257

TemperingTime hours 0-24 572 629

Yield Strength MPa 315920 507.3 92.8

Ultimate Tensile Strength MPa 447-ll51 599 92

971 C 1999 ISIJ
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Amoregenerally applicable neural network modelhas
beencreated by Cool et a/.33) using data from some1652
experiments reported in the published literature. The
extensive set of variables Included in the analysis is

presented in Table 2, which contains information about
the range of each variable. It is emphasised however,
that unlike equation I,

the informatlon in Table 2cannot
be used to define the range of appiicability of the neural
network model. This Is because the inputs are in general
expected to interact. Weshall see later that it is the
Bayesian frameworkwhich allows the calculation of error
bars which define the range of useful applicability of the
trained network.

Theanalysis demonstrated conclusively that there are
strong interactions between the Inputs; thus, the effect

of molybdenumon the strength at low chromiumcon-
centrations was found to be qulte different from that at
high chromiumconcentrations. The entire dataset used
in the analysis Is available on the world wide web
(www,msm,cam.ac.uk/map/mapmain,html).Whennew
data are generated, these can be added to the dataset

to enable the creatlon of moreknowledgeableneural nets.

Another feature of the analysis was that Cool et al.

used a committee of best models to makepredictions. It

is possible that a commlttee of modelscan makea more
reliable prediction than an individual model.34) Thebest

models are ranked using the values of the test errors.
Committeesare then formed by combining the predic-
tions of the best L models, where L=1, 2, • - •; the
size of the commlttee is therefore glven by the value of
L. A plot of the test error of the committee versus its

size L gives a minimumwhich defines the optimumsize

of the committee.

It is goodpractice to use multiple goodmodelsand
combine their predlctlons.34) This will makelittle

difference in the region of the input space where the
fit is good, but mayimprove the reliabi]ity where
there is great uncertainty.

WeldCooling Rate
The tlme taken for a weld to cool in the temperature

range 800-500'C is an important parameter in de-
termining the microstructure and mechanical prop-
erties of the final deposit, and indeed of the adjacent
heat-affected zone. An analytical approximation to the
heat flow problem35,36) has indicated that the time should
dependon the heat input (i.e. welding current, voltage,

speed and arc transfer emciency), the substrate

temperature and the thickness of the plate (i,e, the

dimensionallty of the heat flow). Separate equations are
required for 2, 3or 2~ dimensional heat flow.

Chan et al.37) used the inputs indicated by Adams
physlcal-model and incorporated them into a neural
network model, to obtain a single model for all di-

mensionalities of heat flow. They demonstrated that

the accuracy achieved is better with the neural network,
given the approximations inherent in the ana]ytical

equations of Adam's theory.

Onedifficulty is that the neural network model used
does not give errors bars which are dependent on the

39 (1 999), No. 10
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10cal fit so that the actual range of applicability of the

model is not c]ear. The reliability of the model is not
est',rblished whenextrapolated or interpo]ated beyondthe

domainof the training dataset,

Hot Cracking of Welds
Solidification cracking occurs in welds during coo]ing

from the liquidus temperature, if the density changes
associated with solidification and thermal contraction

cannot be accommodatedby fluid fiow or by the motion
of the solid components which constitute the weld
assembly. Hot-cracklng tests frequently lead to a discrete

outcome, i.e. whether cracking occurs or not. Such a
problem is knownas a binary classificatlon prob]em, and
a classification neural network is used to model the
probability of a crack as a function of the input var-
iables.34) A probability of I represents definite crack-
ing whereas a probabi]ity of Orepresents the absence of
cracking. In the Bayesian framework the uncertain-
ty of the prediction is accounted for by a process of
marginalisatlon. The effect of marginalisation is to take
the output of the best fit neural network and moveit

closer to a probabi]ity of 0.5 by an amountdepending
on the parameters' uncertainty. The value 0.5 in the

OLltpLlt represents the highest level of uncertainty.

Anapp]ication of the classification neural network to
the hot-cracking of ferritic steel welds is shownin Fig.
9.38)

8. Superalloys

Overall Strength
The yield and ultimate tensile strength of nickel-base

superalloys with yh,' microstructures has been mod-
el]ed39•40) using the neural network method, as a function
of the Ni, Cr, Co. Mo, W, Ta, Nb, A], Ti, Fe, Mn, Si.

C, B, and Zr concentratlons, and of the test temperature.
Theanalysis is basedon data selected from the publlshed
literature. The trained modelswere subjected to a variety

of metailurgical tests. As expected, the test temperature
(in the range 25-1100'C) was found to be the most
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slgnlficant variable Influencing the tensile properties,

both via the temperature dependenceof strengthening
mechanismsand due to variations in the y' fraction wlth
temperature. Since precipitation hardening is a dominant
strengthening mechanism, it was encouraglng that the

network recognised Ti, Al and Nb to be key factors

controlling the strength. Thephysical significance of the
neural network was apparent in all the interrogations
performed.

Oneexample illustrating this last point is presented in

Fig. 10. The softening of the y matrix is offset by the

remarkable reversible increase in the strength of the y'

with Increasing temperature.

A further revelation from the neura] network analysis

came from the error estimates, which demonstrated
clearly that there are great uncertainties in the ex-
perimental data on the effect of large concentrations
of molybdenumon the tensile properties. This has
identified a region wherecareful experlments are needed;

molybdenumis knownto have a large influence on the
y/y' Iattice misfit.

9. Fatigue Properties

Fatigue is one of the most difficult mechanical prop-
erties to predict. Anextensive literature review has been
carried out to assess methods for predicting the fatigue

crack growth rates.41) This Included an examination
of physical models, which where either found to lack
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generallty or to give only qualitative indications of the
trends.41'42) Experiments on the initiation and prop-
agation of cracks In turbine-disc superalloys have faiied

to clarify howfatigue theory could be used to makequan-
titative predictions.

Aneural network methodhas therefore beenused after

identifying some51 variables that could be expected to
influence the fatigue crack growth rate in nickel base
superalloys.43) In fact, it is not difficult to compile an
even larger list of variables which could Influence fatigue

properties, but an over ambitlous choice of inputs is

likely to reduce the number of data available in the
literature.

~TlThe number of Inputs chosen is a compromise I
between the definition of the problem and the
availability of data. The neural network method
cannot copewith missing values. Anover ambltious
choice of input variables will in genera] 1lmit the

number of complete sets of data available for

analysis. Onthe other hand, neglect of an important
variable will lead to an increase in the noise
associated with predictions.

Thevariables studied included the stress intenslty range
AK, Iog{AK} chemical composition, temperature, grain
size, heat treatment, frequency, Ioad waveform, atmo-
sphere. R-ratio, the dlstinction between short and long
crack growth, sample thickness and yleld strength. The
analysls wasconducted on some1894data collected from
the published literature. The reason for including both

AKand log{AK} as inputs is because the latter has
metallurgical significance since a plot of the logarithm
of the crack growth rate versus log{AK} is a simple and
well-established relationship. However, there mayexist

unknownand separate effects of AK, in which case that

should be included as an additional input. It is en-
couraging that the trained network in fact assigned
the greatest significance to log{AK}.

Fig. Il.

If a certaln functional relationship Is expected be-

tween the raw output and a particular input, than
that inpLrt can be included twice, in its functional

form and in its raw form. Theinclusion of the latter
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The model, unlike any experimental approach, could
be used to study the effect of each variable in isolation.

This gave interesting results. For example, it wasverified

that an increase in the grain size should lead to a decrease
in the fatigue crack growth rate, whenthe grain size is

varied without affecting any other input. This cannot be
done in experiments because the change in grain size is

achieved by altering the heat treatment, which in turn
influences other features of the microstructure (Fig. 11).

It was also possible to confirm that log{AK} is more
strongly llnked to the fatigue crack growth rate than to

AK, as expected from the Paris law. There are many
other metallurgical trends revealed.43)

Theneural network modelcan in principle be used
to examine the effect of an individual input on the

output parameter, whereas this maybe incredibly
difficult to do experimentally.

In another approach44) a different neural computing
approach was used to focus on stage 11 of the Paris
regime, where the growth rate should dependmainly on
the stress intensity range. Young's modulus and yield

strength. The model was used successfully in estimating

newtest data. The effect of the ultimate tensile strength

and phase stability was a]so investigated; although this

proved promlsing, it is probable that the results will be

moreconvincing whena greater range of data become
available.

Fatigue Threshold
In a recent study of the fatigue thresholds in nickel-base

superalloys, Schooling et al. have attempted to compare
a "neurofuzzy" modelling approach with the classical

neural network.7) The application of fuzzy rules to the

network involves the biassing of the inputs according to

humanexperience.
It was suggested that the fuzzy method has an ad-

vantage with restricted datasets because the complexity
of the relationships can be restricted by the operator.
This conclusion is surprising because the complexity of

a classical neural network, whenassessed for generalisa-
tion, naturally tends to beminimised for small datasets.

Schooling et al. found it necessary to makesignificant

adjustments to the fuzzy rules in order reduce the mean
square error to a value comparable to the classical

network. It is evident that there is considerable operator
bias introduced in designing fuzzy networks. This may
not be satisfactory for complexproblemswherethe actual
relatlonships are not understood to begin with.

The comparison of the two methodsby Schooling et
al. does not seemjustified because the predictions of the
neurofuzzy methodwere not accompaniedby error bars
(other than the meansquare error).

Creep of Superalloys
The creep rupture life of nicke] base superalloys has

been modelled as a function of 42 variables including
Cr, Co, C, Si. Mn, P, S, Mo, Cu, Ti, A1, B, N, Nb, Ta,
Zr, Fe, W, V, Hf, Re, Mg, La and Th02'45) Other
variables include four heat treatment steps (characterised
by temperature, duration and cooling rate), the sample

(1 999). No. IO
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shape and the solidification method.
Sathyanarayanan et al.46) have developed a neural

network model for the "creep feed grinding" of nickel-
'base superalloys and titanium alloys, using the feed
rate, depth of cut and wheel bond type as Inputs, and
the surface finish, force and power as outputs.

Lattice Parameters of Superalloys
The lattice constants of the yand y' phases of nickel

superalloys have been modelled using a neural network
within a Bayesian framework.47) Theanalysis wasbased

on newX-ray measurementsand peak separation tech-

niques, for a numberof alloys and as a function of tem-
perature. These data were supplemented using the pub-
lished literature.

Thelattice parameters of the two phaseswereexpressed

as a non-1inear functlon of eighteen variables including
the chemical composition and temperature. It waspos-
sible to estimate the uncertainties and the methodhas
proved to be extremely useful in understanding both
the effect of solutes on the lattice mismatch, and on
howthis mismatchchanges with temperature.

10. Transformations

Martensite-start Temperature
Martensite forms without diffusion and has a well-

defined start-temperature (Ms), which for the majority
of engineering steels is only sensitive to the chemical
composltion of the austenite. There are numerous re-
gression equations in the published literature, which
have been used for manydccades in the estimation of
Ms, mostly as a linear function of the chemical com-
position. Vermeulen et a/.48) demonstrated that a neu-
ral network model can do this muchmore effectively,

and at the same time demonstrated clear interactions

between the elernents. For example, the magnitude of
the effect of a given carbon content on Ms is much
larger at low manganeselevels than at high manganese
concentrations. This is in contrast to all published
equations where the sensitivity to carbon is independent
of the presence of other alloying elements.

Continuous Cooling Transformation Diagrams
The transformation of austenite as the temperature

decreases during continuous cooling has been modelled
with the neural network method using the chemical
composition, the austenitisation temperature andcooling
rate as inputs.49] The results were concluded to be
satisfactory but with large errors particularly for the
bainite reaction. Theselarge errors were attributed partly

to noise in the experimental data, to the neglect of
austenite grain size as an input, and to the assumption
that all transformations occur at all cooling rates,

whereas this Is not the case in practice.

Thenetwork is empirical and hence permits a calcula-

tion of each transformation under all circumstances, even
whenthis involves extrapolation into forbidden domains.
This difficulty might be avoided by modelling the total

fraction of transformation and the transformation-start

temperatures separately, and then using a logical ruie to

determine whether the transformatlon is real or not.
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A further effect is illustrated by a later studyso); the

neural network calculations of CCTcurves as illustrated

in Fig. 12 appearjagged, rather than the expected smooth
curves. This Is because the points on the curve are
calculated individually and have been joined without
accounting for errors. If smooth curves are definitely

required, then the experimental curves should be rep-
resented mathematically, and the parameters required

to describe these curves can be used as inputs. There will,

of course, be error bars to be taken into account but
these will be smoothly disposed about the mostexpected

curve.
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Austenite Formation
Most commercial processes rely to someextent on

heat treatments which cause the steel to revert into the
austenitic condition. Thls includes the processes in-

volved in the manufacture of wrought steels, and in the
fabrlcation of steel componentsby welding.

The formation of austenite during heating differs in

manywaysfrom those transformations that occur during
the cooling of austenite. Both the diffusion coefficient

and the driving force increase with the extent of superheat
above the equilibrium temperature, so that the rate of
austenite formation must increase indefinitely with

temperature.
There is another important difference between the

transformation of austenite, and the transformation to
austenite. In the former case, the kinetics of transforma-
tion can be described completely in terms of the alloy

composition and the austenite grain size. By contrast,
the microstructure from which austenite maygrow can
be infinitely varied. Manymorevariables are therefore

needed to describe the kinetics of austenite formation.
Gavardet al,sl) have created a neural network model

in which the Acl and Ac3 temperatures of steel are
estimated as a function of the chemical composition and
the heating rate. Themodelhas beenvery revealing; some
of the features are illustrated in Fig. 13. As might be
expected, the Acl temperature decreases with carbon
concentration reaching a limiting value which is very
close to the eutectoid temperature of about 723'C. This
latter limit is expected because of the slow heating rate
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and the fact that the test steel does not contain any
substitutional solutes. Note that there is a slight un-
derprediction of the Acl temperature for pure iron,

although the expected temperature of about 910'C is

within the 95 o/o confidence limits of the prediction (twice
the width of the error limits illustrated in Fig. 13).

By contrast, the Ac3 temperature appears to go
through a minimumat about the eutectoid carbon
concentratlon. This is also expected because the Ae3
temperature also goes through a minimum at the
eutectoid composi~ion. Furthermore, uniike the Acl
temperature, the minimumvalue of the calculated Ac3
never reaches the eutectoid temperature; even at the slow
heating rate it is expected that the austenite transforma-
tion finishes at some superheat above the eutectoid
temperature, the superheat belng reasonabiy predicted
to be about 25'C.

At slow heating rates, the predicted Acl and Ac3
temperatures are in fact very close to the equilibrium
Ael and Ae3 temperatures and insensitive to the rate of
heating. As expected, they both increase more rapidly
whenthe heating rate rises exceeds about lO'C s~ l. The
significant maximumas a function of the heating rate is

unexpected and is a prediction which suggests that further
experiments are necessary.

Neural network analysis of published data can
help identify experiments in two ways. First, un-
expected trends mlght emerge. Secondly, the error
bars maybe so large as to makethe prediction un-
certain, in which case experiments are necessary.

11. Steel Processing and Mechanical Properties

Hot Rolling

The properties of steel are great]y enhanced by the
rolling process. It is possible to cast steel into virtually
the final shape but such a product will not have the
quality or excellence of a carefully rolled product.

Singh et al.52) have deve]oped a neural network model
in which the yleld and tensile strength of the steel is

estimated as a function of some 108 variables, includ-
ing the chemical composition and an array of rolling

parameters. Implicit in the rolling parameters is the
thermal history and mechanical reduction of the slab as
it progresses to the final product. The training data come
from sensors on the rolling mill. There is therefore no
shortage of data, the limitation in thls case being the
need to economise on computations. There are some
exciting results which makesense from a metallurgical
point of view, together with somenovel predictions on
a way to control the yield to tensile strength ratio. A
similar mode] by Korczak et al.53) uses microstructural
parameters as inputs and has been applied to the
calculation of the ferrite grain size and property dis-

tribution through the thickness of the final plate.

Vermeulen et a/.54) have slmilarly modelled the

temperature of the steel at the last finishing stand. They
demonstrated that it is definitely necessary to use a
non-llnear representation of the input variables to obtain
an accurate prediction of the temperature. The control

(1999), No. 10
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of strip ternperature on a hot strip mill rLlnoLlt table has
also been modelled by Loney et a/.ss)

Heat Treatment
AJominy test is used to measurethe hardenability of

steel during heat treatment. Vermeulenet al. 56) havebeen
able to accurately represent the Jominy hardness profiles
of steels as a function of the chemica] composition and
austenitising temperature.

Mechanica] Properties
There are manyother examples of the use of neural

networks to describe the mechanical properties of steels;

Dumortier et al. have modelled the properties of micro-
al]oyed stee]s57); Mllykoski58,59) has addressed the
problem of strength variations in thin steel sheets; mi-
crostructureproperty relationshlps of C-Mnsteels60).

the tenslle properties of mechanically alloyed lron61,62)

with a comparlson with predictions using physical
models; the hot-torsion properties of austenite.63)

12. Polymeric and Inorganic Compounds

Neural network methodshave been used to model the
glass transition temperatures of amorphousand semi-
crystalline po]ymers to an accuracy of about 10K,
and similar models have been developed for relaxatlon
temperatures, degradation temperature, refractive index,
tensile strength, e]ongation, notch strength, hardness,
etc.6466) The molecular structure of the monomerlc
repeating unit Is described using topological indices from
graph theory. The techniques have been exploited, for
example, in the design of polycarbonates for increased
impact resistance. In another analysis, the glass transltion

temperature of linear homopolymershas beenexpressed
as a function of the monomerstructure, and the model
has been shown to generalise to unseen data to an
accuracy of about 35 K.67)

Comparisonwith QuantumMechanical Calculations
There is an interesting study68) which claims that

neural networks are able to predict the equilibrium
bond length, bond dissociation energy and equilibrium
stretching frequency more accurately, and far more
rapidly than quantummechanical calculations. Thework
dealt with diatomic molecules such as LiBr, using thirteen
inputs: atomic number, atomic weight (to include isotope
effects), valence electron configuration (s, p, d, .f elec-

trons) for both atoms, and the overall charge. The
corresponding quantum mechanical calculations used
effective core potentials as inputs. It was found that all

three molecular properties could be predicted more
accurately using neural networks, with a considerable
reduction in the computational effort.

Suchacomparison of a physica] modelwith one vjhich
is empirical is not always likely to be fair. In general,

an appropriate neural network model should perform
badly whencomparedwith a physical model, whenboth
are presented with precisely identical data. This is because
the neural network can only learn from the data it is

exposed to. By contrast, the physical model wlll contaln
relationships which have somejustification In science,

and which impose constraints on the behaviour of the
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modelduring extrapolation. Asaconsequence, the neural
network is likely to violate physical princip]es whenused
without restriction. Thecontinuous cooling transforma-
tion curve model discussed above49'50) Is an example
where the neural network produces information in

forbidden domainsand produces jagged curves, which a
physical model using the samedata would not because
the form of the curves would be based on phase
transformation theory [e,g. Ref. 69)].

13. Ceramics

Ceramic Matrix Composites
Ceramic matrix composites rely on a weak interface

between the matrlx and fibre. This introduces slip and
debonding durlng deformation, thus avoidlng the catas-
trophic propagation of failure. The mathernatlcal treat-

mentof the deformation has a large numberof variables

with manyfitting parameters. For an Al203 matrix SiC
whisker composite a constitutive law has been derived
using an artificial neural network, using inputs generated
by finite element analysis.70)

Hybrid models can be created by training neural
networks on data generated by physical models.

Machining and Processing
There are manyexampleswhereneural networks have

been used to estimate machine-tool wear. For example,
Ezuguwuet al.71) have modelled the tool 1lfe of a
mixed-oxide ceramlc cutting tool as a function of the

feed rate, cutting speed and depth of cut. Tribology
issues in machining, Including the use of neural networks,
have been reviewed by Jahanmir.72)

Neural networks are also used routinely in the control
of cast ceramic products madeusing the slip casting
technique, using variables such as the ambient conditions,

raw materlal information andproduction line settings.73)

In another application, scanning electron microscope
images of ceramic powderswere digitised and processed

to obtain the particle boundary profile; this informa-
tlon was then classified using a neural approach, with
exceptionally good results even on unseen data.74)

14. Thin Films and Superconductors

A Iot of the materials science type issues about thin

films naturally involve deposition and characterisation.

The deposition process can be very compllcated to con-
trol and is ideally suited for neural network applica-

tions.

Neural networks have been used to interpret Raman
spectroscopy data to deduce the superconducting
transition temperature of YBCOthin fiims during the

deposition process75); to characterise reflection hlgh-

energy electron dlffractlon patterns from semiconductor
thin films in order to monitor the deposition process76).

to rapidly estimate the optical constants of thin films

using the computationa] results of a physical model of
thin films77). and there are numerous other simi]ar

examples.
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There is one particular application which falls in the

category of "alloy design"; Asada et a/.78) trained a
neural network on a database of (Y1_*Ca*)Ba2Cu30_.
and Y(Ba2_*Ca*)Cu30=,where -' is generally less than
7, the ideal numberof oxygen atoms. The output pa-
rameter was the superconducting transition tempera-
ture as a function of x and z. They were thus able to
predict the transition temperature of YBa2Cu30=doped
with calclum. It was demonstrated that the highest

temperature is expected for x=0.3 and z=6.5 in

(Y1_*Ca*)Ba2Cu30=whereas a different behaviour oc-
curs for Y(Ba2_*Ca*)Cu30..

l 5. Composites

There are manyapplications wherevibration informa-
tlon can be used to assess the damagein composite
structures e.g.79 ~ 81) Acoustic emission signals have been
used to train a neural network to determine the burst

pressure of fiberglass epoxypr~ssure vessels.82) There has

even been an application trr the detection of cracks in
eggs.83)

Onedifferent application is in the optimisation of the
curing process for polymer-matrix composites made
using thermosetting resins.84) An interesting applica-
tion is the modelling of damageevolution during forging
of AlSiC particle relnforced brake dlscs.85) Theauthors

were able to predict damagein a brake component
previously unseen by the neural network model.

Hwanget cd.86) compareda prediction of the failure

strength of carbon fibre reinforced polymer composite,
madeusing a neural network model, against the Tsai-Wu
theory and an alternative hybrid model. Of the three
models, the neural network gave the smallest root-mean
square error. Nevertheless, the earlier commentsabout
the validity of the neural network in extrapolation etc.

remain as a cautionary note in comparisons of neural
and physical models.

16. Publication

Theapplication of neural networks in materials science
is a rapidly growing field. There are numerouspapers
being published but the vast majority are of little use
other than to the authors. This is becausethe publications
almost never include detailed algorithms, weights and
databases of the kind necessary to reproduce the work.
Work which cannot be reproduced or checked goes
against the principles of scientlfic publication.

The mlnimuminformation required to reproduce a
trained network is the structure of the network, the nature
of the transfer functions, the weights corresponding to

the optimised network and the range of each input and
output variable. Suchdetalled numerical information is

unlikely to be accepted for publication in journals. There
is nowa world wide website where this information can
be logged for commonaccess:

wT'vvv.msm.ca,11.ac.uk/map/mcrpmain.html

It is also good practice to deposit the datasets used in

the development of neural networks in this materials

algorithms library.87)

@1999 ISIJ
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17. Summary

Neural networks are clearly extremely useful in recog-
nising patterns in complex data. The resulting quantita-
tive models are transparent; they can be interrogated
to reveal the patterns and the model parameters can
be studied to illuminate the significance of particular
variables. A trained network embodies the knowledge
within the training dataset, and can be adapted as
knowledge is accumulated.

Neural network analysis has had a liberating effect on
materials science, by enabling the study of incredibly
diverse phenomenawhich are not as yet accessible to
physical modelllng. Themethodology is used extensively
in process control, process design and alloy design. It is

a technique which should nowform a standard part of
the undergraduate curriculum.
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