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There are difficult problems in materials science where the general concepts might be understood but
which are not as yet amenable to scientific treatment. We are at the same time told that good engineering
has the responsibility to reach objectives in a cost and time-effective way. Any model which deals with
only a small part of the required technology is therefore unlikely to be treated with respect. Neural network
analysis is a form of regression or classification modelling which can help resolve these difficulties whilst
striving for longer term solutions. This paper begins with an introduction to neural networks and contains
a review of some applications of the technique in the context of materials science.
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1. Introduction

The development and processing of materials is
complex. Although scientific investigations on materials
have helped greatly in understanding the underlying
phenomena, there remain many problems where quan-
titative treatments are dismally lacking. For example,
whereas dislocation theory can be used to estimate the
yield strength of a microstructure, it is not yet possible
to predict the strain hardening coefficient of an engi-
neering alloy. It follows that the tensile strength,
elongation, fatigue life, creep life and toughness, all of
which are vital engineering design parameters, cannot
even be estimated using dislocation theory. A more
comprehensive list of what needs to be done in this
context is presented in Table 1.

The lack of progress in predicting mechanical prop-
erties is because of their dependence on large num-
bers of variables. Nevertheless, there are clear patterns
which experienced metallurgists recognise and under-
stand. For example, it is well understood that the tough-
ness of a steel can be improved by making its micro-
structure more chaotic so that propagating cracks are
frequently deflected. It is not clear exactly how much
the toughness is expected to improve, but the qualitative
relationship is well established on the basis of a vast
number of experiments.

Neural network models are extremely useful in such
circumstances, not only in the study of mechanical
properties but wherever the complexity of the problem
is overwhelming from a fundamental perspective and
where simplification is unacceptable. The purpose of
this review is to explain how vague ideas might be
incorporated into quantitative models using the neural
network methodology. We begin with an introduction
to the method, followed by a review of its application
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to materials.

2. Physical and Empirical Models

A good theory must satisfy at least two criteria. It
must describe a large class of observations with few
arbitrary parameters. And secondly, it must make pre-
dictions which can be verified or disproved. Physical
models, such as the crystallographic theory of martens-
ite,""? satisfy both of these requirements. Thus, it is
possible to predict the habit plane, orientation rela-
tionship and shape deformation of martensite with a
precision greater than that of most experimental tech-
niques, from a knowledge of just the crystal structures
of the parent and product phases. By contrast, a linear
regression equation requires at least as many parame-

Table 1. Mechanical properties that need to be expressed
in quantitative models as a function of large
numbers of variables.

Property Relevance

Yield strength All structural applications
Ultimate tensile strength

YS/UTS ratio

All structural applications
Tolerance to plastic overload
Resistance to brittle fracture

Related to YS and UTS

Elongation
Uniform elongation
Non-uniform elongation Related to inclusions

Toughness Tolerance to defects
Fatigue Cyclic loading, life assessments
Stress corrosion Slow corrosion & cracking
Creep strength High temperature service
Creep ductility Safe design
Creep-fatigue Fatigue at creep temperatures
Elastic modulus Deflection, stored energy

Thermal expansivity Thermal fatigue/stress/shock

Hardness Tribological properties
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ters as the number of variables to describe the experi-
mental data, and the equation itself may not be physi-
cally justified. Neural networks fall in this second cat-
egory of empirical models; we shall see that they have
considerable advantages over linear regression. In spite
of the large number of parameters usually necessary to
define a trained network, they are useful in circumstances
where physical models do not exist.

3. Linear Regression

Most scientists are familiar with regression analysis
where data are best-fitted to a specified relationship which
is usually linear. The result is an equation in which each
of the inputs x; is multiplied by a weight w;; the sum of
all such products and a constant 8 then gives an estimate
of the output y=zj w;x;+6. As an example, the tem-
perature at which the bainite reaction starts (i.e. Bg) in
steel may be written®:

Bs(°C)=
830 =270 x cc—90 X cpn—37 X ey — 70 X ¢, — 83 X Cpyo
0 We Watn Wi Wer Wro

where ¢; is the wt% of element i which is in solid so-
lution in austenite. The term w; is then the best-fit value
of the weight by which the concentration is multiplied;
0 is a constant. Because the variables are assumed to be
independent, this equation can be stated to apply for the
concentration range:

Carbon 0.1-0.55wt% Nickel 0.0-5.0
Silicon 0.1-0.35 Chromium 0.0-3.5
Manganese 0.2-1.7 Molybdenum 0.0-1.0

and for this range the bainite-start temperature can be
estimated with 90 % confidence to 4+ 25°C.

Equation (1) assumes that there is a linear dependence
of By on concentration.* It may also be argued that there
is an interaction between carbon and molybdenum since
the latter is a strong carbide forming element. This can
be expressed by introducing an additional term as fol-
lows:

BLC=830—-270x cc—90 X cp —37 X e — 70 X €
—83 X ey 22 X (€ X Cpo)

interaction

Of course, there is no justification for the choice of the
particular form of relationship. This and other difficulties
associated with ordinary linear regression analysis can
be summarised as follows:

Difficulty (a) A relationship has to be chosen before
analysis.

Difficulty (b) The relationship chosen tends to be
linear, or with non-linear terms added
together to form a psuedo-linear equa-
tion.

Difficulty (¢) The regression equation, once derived,

hidden unit tanh(sw{"x; + o)
]

input nodes Wi\ w1 (1
. o ¢ Nh i
Wc Wi N
T

w2 h 4o

output node l

(@) (b)

Fig. 1. (a) A neulal network representation of linear re-
gression. (b) A non-linear network representation.

applies across the entire span of the
input space. This may not be reasona-
ble. For example, the relationship be-
tween strength and the carbon con-
centration of an iron-base alloy must
change radically as steel gives way to
cast iron.

4. Neural Networks

A general method of regression which avoids these
difficulties is neural network analysis, illustrated at first
using the familiar linear regression method. A network
representation of linear regression is illustrated in Fig.
1(a). The inputs x; (concentrations) define the input
nodes, the bainite-start temperature the output node.
Each input is multiplied by a random weight w; and the
products are summed together with a constant 8 to give
the output y=),w;x;+0. The summation is an op-
eration which is hidden at the hidden node. Since the
weights and the constant @ were chosen at random, the
value of the output will not match with experimental
data. The weights are systematically changed until a
best-fit description of the output is obtained as a function
of the inputs; this operation is known as training the
network.

The network can be made non-linear as shown in Fig.
1(b). As before, the input data x; are multiplied by weights
(w{), but the sum of all these products forms the
argument of a hyperbolic tangent:

t

h= tanh( Y wilx;+ 9) with y=w®hr+0® _(3)

where w® is a weight and 6 another constant. The
strength of the hyperbolic tangent transfer function is
determined by the weight w;. The output y is therefore
a non-linear function of x;, the function usually chosen
being the hyperbolic tangent because of its flexibility.
The exact shape of the hyperbolic tangent can be varied
by altering the weights (Fig. 2(a)). Difficulty (c) is avoided
because the hyperbolic function varies with position in
the input space.

A one hidden-unit model may not however be suffi-

* In this particular case, a physical model exists which proves that the dependence on concentration is not linear®. In general, blind models such
as linear regression or neural network analysis are only used when physical models are not available or when the latter are tedious to apply.
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Fig. 2. (a) Three different hyperbolic tangent functions; the
“strength” of each depends on the weights. (b) A
combination of two hyperbolic tangents to produce a
more complex model.
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Fig. 3. The structure of a two hidden-unit neural network.
Details have been omitted for simplicity.
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Fig. 4. Variations in the test and training errors as a function of model complexity, for noisy data in a case where y
should vary with x2. The filled points were used to create the models (i.e. they represent training data), and
the circles constitute the test data. (a) A linear function which is too simple. (b) A cubic polynomial with
optimum representation of both the training and test data. (c) A fifth order polynomial which generalises
poorly. (d) Schematic illustration of the variation in the test and training errors as a function of the model

complexity.

ciently flexible. Further degrees of non-linearity can be
introduced by combining several of the hyperbolic
tangents (Fig. 2(b)), permitting the neural network
method to capture almost arbitrarily non-linear rela-
tionships. The number of tanh functions is the number
of hidden units; the structure of a two hidden unit
network is shown in Fig. 3.

The function for a network with i/ hidden units is
given by

Y=L wPh 0D s @

where

hy= tanh< Y wilx;+ 9}”) ................... 5
i

Notice that the complexity of the function is related to
the number of hidden units. The availability of a suf-
ficiently complex and flexible function means that the
analysis is not as restricted as in linear regression where
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the form of the equation has to be specified before the
analysis.

The neural network can capture interactions between
the inputs because the hidden units are nonlinear. The
nature of these interactions is implicit in the values of
the weights, but the weights may not always be easy to
interpret. For example, there may exist more than just
pairwise interactions, in which case the problem becomes
difficult to visualise from an examination of the weights.
A better method is to actually use the network to make
predictions and to see how these depend on various
combinations of inputs.

5.  Overfitting

A potential difficulty with the use of powerful non-
linear regression methods is the possibility of overfitting
data. To avoid this difficulty, the experimental data
can be divided into two sets, a training dataset and
a test dataset. The model is produced using only the
training data. The test data are then used to check that
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the model behaves itself when presented with previous-
ly unseen data. This is illustrated in Fig. 4. which shows
three attempts at modelling noisy data for a case where
y should vary with x3. A linear model (Fig. 4(a)) is too
simple and does not capture the real complexity in the
data. An overcomplex function such as that illustrated
in Fig. 4(c) accurately models the training data but gen-
eralises badly. The optimum model is illustrated in Fig.
4(b). The training and test errors are shown schemati-
cally in Fig. 4(d); not surprisingly, the training error
tends to decrease continuously as the model complexity
increases. It is the minimum in the test error which
enables that model to be chosen which generalises best
to unseen data.

This discussion of overfitting is rather brief because
the problem does not simply involve the minimisation
of test error. There are other parameters which control
the complexity, which are adjusted automatically to try
to achieve the right complexity of model.>®

Error Estimates

The input parameters are generally assumed in the
analysis to be precise and it is normal to calculate an
overall error by comparing the predicted values (y;) of
the output against those measured (¢;), for exampile,

Ey is expected to increase if important input variables
have been excluded from the analysis. Whereas Ep, gives
an overall perceived level of noise in the output pa-
rameter, it is, on its own, an unsatisfying description of
the uncertainties of prediction. Figure 5 illustrates the
problem; the practice of using the best-fit function (i.e.
the most probable values of the weights) does not
adequately describe the uncertainties in regions of the
input space where data are sparse (B), or where the data
are noisy (A).

MacKay has developed a particularly useful treatment
of neural networks in a Bayesian framework,*>® which
allows the calculation of error bars representing the
uncertainty in the fitting parameters. The method rec-
ognises that there are many functions which can be
fitted or extrapolated into uncertain regions of the input
space, without unduly compromising the fit in adjacent
regions which are rich in accurate data. Instead of
calculating a unique set of weights, a probability dis-
tribution of sets of weights is used to define the fitting
uncertainty. The error bars therefore become large
when data are sparse or locally noisy, as illustrated in
Fig. 5.

This methodology has proved to be extremely useful
in materials science where properties need to be estimated
as a function of a vast array of inputs. It is then most
unlikely that the inputs are uniformly distributed in the
input space.

6. Miscellany

Neural networks are often associated with the working
of the human brain or with artificial intelligence. This

X

Fig. 5. Schematic illustration of the uncertainty in defining a
fitting function in regions where data are sparse (B) or
where they are noisy (A). The thinner lines represent
error bounds due to uncertainties in determining the
weights.

can be misleading:

(1) The neural network method described here can
be expressed as an equation which is precise and
which is precisely reproducible for a given set of
inputs. It is a regression method of which linear
regression is a subset. One has to use the con-
siderable imagination to see in this a connec-
tion with “intelligence” or with the working of
the brain.

(2) The method is sometimes incorrectly described as
a “black box™ technique.” On the contrary, it is
transparent, consisting of an equation and associ-
ated coefficients (the weights). Both the equation
and the weights can be studied to reveal rela-
tionships and interactions.

We now proceed to discuss specific applications of neural

networks in the context of materials. There are some

general principles which emerge; these are emphasised in
narrow paragraphs. '

7. Welding

Welding has seen major applications of the neural
network method. Examples include: weld seam tracking
where the output from sensors is interpreted by a trained
network to control a welding robot®; the interpretation
of sensor information measured during welding to de-
termine weld quality®!®; the detection of defects in
welds using ultrasonic, radiation or other signals*!~9;
the estimation of weld profile (including penetration)
from variations in welding parameters or other sensed
parameters.29 727

The use of neural networks is therefore well established
in the control and monitoring of welds. We shall focus
here on specific applications of greatest interest in
materials science. There are other papers in the present
issue of ISIJ International, which are not discussed
here.

Charpy Toughness of Steel Weld Metal

The concept of toughness as a measure of the energy
absorbed during fracture is well-developed.?®2? It is
often measured using notched-bar impact tests of which
the most common is the Charpy test. A square section
notched bar is fractured under specified conditions and
the energy absorbed during fracture is taken as a measure

© 1999 ISIJ
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Fig. 6. Bar chart showing a measure of the model-perceived
significance of each of the input variables in influencing
toughness.3?.

of toughness. The Charpy test is empirical in that the
data cannot be used directly in engineering design. It
does not provide the most searching mechanical con-
ditions. The sample has a notch, but this is less than
the atomically sharp brittle crack. Although the test
involves impact loading, there is a requirement to start
a brittle crack from rest at the tip of the notch, suggest-
ing that the test is optimistic in its comparison against a
propagating brittle crack.?®) Most materials can be as-
sumed to contain sub-critical cracks so that the initia-
tion of a crack seems seldom to be an issue.

The Charpy test is nevertheless a vital quality con-
trol measure which is specified widely in international
standards, and in the ranking of samples in research
and development exercises. It is the most common first
assessment of toughness and in this sense has a proven
record of reliability. The test is usually carried out at a
variety of temperatures in order to characterise the
ductile-brittle transition intrinsic to body-centred cubic
metals with their large Peierls barriers to dislocation
motion.

The toughness of ferritic steel welds has been studied
using neural networks.?® The Charpy toughness was
expressed as a function of the welding process (manual
metal arc or submerged arc), the chemical composition
(C, Mn, Si, Al, P, S, O & N), the test temperature and
the microstructure (primary, secondary, allotriomorphic
ferrite, Widmanstétten ferrite, and acicular ferrite). The
inclusion of microstructure greatly limited the quantity
of data available for analysis because few such results
are reported in the literature. Nevertheless, the aim of
the analysis was to see if the network recognised known
trends in toughness as a function of the microstructure.
The welding process was numerically distinguished in the
analysis by using 0 and 1 for the manual and submerged
arc methods.

Figure 6 illustrates the significance (g,,) of each of the
input variables, as perceived by the neural network, in
influencing the toughness of the weld. As expected, the
welding-process has its own large effect; it is well known
that submerged arc welds are in general of a lower
quality than manual metal arc welds. The yield strength
has a major effect; it is known that an increase in the
yield strength frequently leads to a deterioration in the
toughness. It is also widely believed, as seen in Fig. 6,
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Fig. 7. Variation in the normalised toughness as a function
of the oxygen concentration. Oxygen is varied here
without changing any of the other inputs. The max-
imum oxygen concentration in the training data was

821 p.p.m.

that acicular ferrite greatly influences toughness. Ni-
trogen has a large effect, as is well established experi-
mentally.

A trained neural network is associated with reveal-
ing parameters other than just the transfer function
and weights. For example, the extent to which each
input explains variations in the output parameter
can easily be examined.

It is surprising that carbon has such a small effect
(Fig. 6), but what the results really demonstrate is that
the influence of carbon comes in vig the strength and
microstructure. Other trends have been discussed in Ref.
30).

Oxygen influences welds in both beneficial and harmful
ways, e.g. by helping the nucleation of acicular ferrite
or contributing to fracture by nucleating oxides. The
predicted effect of oxygen concentration is illustrated in
Fig. 7 along with the +1 standard deviation predicted
error bars, Itis clear that extrapolation into regions where
data are sparse or noisy is identified with large error bars.
The training data used for the toughness model had a
maximum oxygen concentration of 821 parts per million.

Neural network models which indicate appropri-
ately large error bars in regions of the input space
where the fitting is uncertain are less dangerous in
applications than those which simply identify a
global level of noise in the output.

Figure 8 shows how the toughness varies as a function
of the manganese concentration and the test temperature.
It is obvious that the effect of temperature is smaller at
large concentrations of manganese, ie. there is an
interaction between the manganese and temperature.
This interaction has been recognised naturally by the
model and is expected from a metallurgical point of
view.3?
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Neural networks deduce the relationship between
variables, including any interactions. In complex
cases involving many variables, the interactions
are revealed both qualitatively and quantitatively
by examining the predictions, asillustrated in Fig. 8.

Analyses carried out without an examination of the
consequences have tended to lead to the incorrect con-
clusion that the neural network method lacks trans-
parency. For example, Chan et al.3V created a model for
the hardness of the heat affected zone of steel welds as
a function of the carbon concentration, the carbon-
equivalent and the cooling rate within a specified tem-
perature range. Having produced the model, they did not
continue to study how the hardness depends on each
of the input parameters, whether the relationship differs
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Fig. 8. Variation in the normalised toughness as a function
of the manganese concentration and the test tem-
perature.

for low and high carbon steels, etc.

The toughness model described above3? is revealing
but nevertheless, impractical for routine use because the
inputs include the microstructure, which can be difficult
to predict or measure. This can be resolved by eliminating
the microstructural inputs and including the welding
conditions (current, voltage, speed, interpass tempera-
ture, arc efficiency) which determine the cooling rate of
the weld. The microstructure is a function of the cooling
rate and chemical composition (both easy to measure)
so it does not have to be included explicitly.

For practical applications, the most useful neural
network models are those whose inputs are easily
measured, perhaps as a part of the quality control
process. On the other hand, it may be revealing to
use inputs which are related directly to the output
parameter, so that mechanisms are revealed.

Strength of Steel Welds

The tensile strength of a weld metal is frequently set
higher than that of the corresponding base metal.®?) It
may also be necessary to maintain a significant difference
between the yield and ultimate tensile strengths in order
to ensure considerable plasticity before failure, and to
resist the growth of fatigue cracks. Svensson®? has
compiled an extensive list of linear regression.equations
for estimating the strength as a function of the weld
metal chemical composition. The equations are limited to
specific alloy systems and cover no more than five alloying
elements. There is no facility for estimating the effect of
heat treatments.

Table 2. The variables used in the analysis of strength. The abbreviation
p.p.m.w. stands for parts per million by weight. Notice that this
table cannot be used to define the range over which a neural
network might be expected to give safe predictions.

Variable Range Mean Standard
Deviation
Carbon weight % 0.029-0.16 0.074 0.024
Silicon weight % 0.040-1.14 0.34 0.124
Manganese weight % 0.27-2.25 1.20 0.39
Sulphur weight % 0.001-0.14 0.0097 0.0069
Phosphorus weight % 0.004~-0.25 0.013 0.011
Nickel weight % 0.00-3.50 0.22 0.63
Chromium weight % 0.00-9.35 0.734 2.07
Molybdenum weight % 0.00-1.50 0.17 0.35
Vanadium weight % 0.00-0.24 0.018 0.049
Copper weight % 0.00-1.63 0.074 0.224
Cobalt weight % 0.00-2.80 0.011 0.147
Tungsten weight % 0.00-2.99 0.0115 0.146
Titanium p. p. m. w. 0690 40.86 79.9
Boron p. p. m. w. 0-69 1.17 5.78
Niobium p. p. m. w. 0-1000 57.4 151
Oxygen p. p. m. w. 1321650 441 152
Heat Input kJ mm™! 0.6-7.9 1.85 1.47
Interpass Temperature °C 20300 207.7 48.93
Tempering Temperature °C 0-760 320.4 257
Tempering Time hours 0-24 5.72 6.29
Yield Strength MPa 315-920 507.3 92.8
Ultimate Tensile Strength MPa 447-1151 599 92
971 © 1999 ISlJ
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A more generally applicable neural network model has
been created by Cool et al.** using data from some 1 652
experiments reported in the published literature. The
extensive set of variables included in the analysis is
presented in Table 2, which contains information about
the range of each variable. It is emphasised however,
that unlike equation 1, the information in Table 2 cannot
be used to define the range of applicability of the neural
network model. This is because the inputs are in general
expected to interact. We shall see later that it is the
Bayesian framework which allows the calculation of error
bars which define the range of useful applicability of the
trained network.

The analysis demonstrated conclusively that there are
strong interactions between the inputs; thus, the effect
of molybdenum on the strength at low chromium con-
centrations was found to be quite different from that at
high chromium concentrations. The entire dataset used
in the analysis is available on the world wide web
(www.msm.cam.ac.uk/map/mapmain.html). When new
data are generated, these can be added to the dataset
toenable the creation of more knowledgeable neural nets.

Another feature of the analysis was that Cool et al.
used a committee of best models to make predictions. It
is possible that a committee of models can make a more
reliable prediction than an individual model.>* The best
models are ranked using the values of the test errors.
Committees are then formed by combining the predic-
tions of the best L models, where L=1, 2, ---; the
size of the committee is therefore given by the value of
L. A plot of the test error of the committee versus its
size L gives a minimum which defines the optimum size
of the committee.

It is good practice to use multiple good models and
combine their predictions.>* This will make little
difference in the region of the input space where the
fit is good, but may improve the reliability where
there is great uncertainty.

Weld Cooling Rate

The time taken for a weld to cool in the temperature
range 800-500°C is an important parameter in de-
termining the microstructure and mechanical prop-
erties of the final deposit, and indeed of the adjacent
heat-affected zone. An analytical approximation to the
heat flow problem?33:3% has indicated that the time should
depend on the heat input (i.e. welding current, voltage,
speed and arc transfer efficiency), the substrate
temperature and the thickness of the plate (i.e. the
dimensionality of the heat flow). Separate equations are
required for 2, 3 or 2-% dimensional heat flow.

Chan et al.*” used the inputs indicated by Adams
physical-model and incorporated them into a neural
network model, to obtain a single model for all di-
mensionalities of heat flow. They demonstrated that
the accuracy achieved is better with the neural network,
given the approximations inherent in the analytical
equations of Adam’s theory.

One difficulty is that the neural network model used
does not give errors bars which are dependent on the
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Fig. 9. Predicted effect of molybdenum and carbon on
solidification cracking in steel welds.?®

local fit so that the actual range of applicability of the
model is not clear. The reliability of the model is not
established when extrapolated or interpolated beyond the
domain of the training dataset.

When comparing neural network models with
physical models, it is useful to illustrate and study
the behaviour of the neural network models in
domains beyond the range of the training data.

Hot Cracking of Welds

Solidification cracking occurs in welds during cooling
from the liquidus temperature, if the density changes
associated with solidification and thermal contraction
cannot be accommodated by fluid flow or by the motion
of the solid components which constitute the weld
assembly. Hot-cracking tests frequently lead to a discrete
outcome, i.e. whether cracking occurs or not. Such a
problem is known as a binary classification problem, and
a classification neural network is used to model the
probability of a crack as a function of the input var-
iables.*® A probability of 1 represents definite crack-
ing whereas a probability of 0 represents the absence of
cracking. In the Bayesian framework the uncertain-
ty of the prediction is accounted for by a process of
marginalisation. The effect of marginalisation is to take
the output of the best fit neural network and move it
closer to a probability of 0.5 by an amount depending
on the parameters’ uncertainty. The value 0.5 in the
output represents the highest level of uncertainty.

An application of the classification neural network to
the hot-cracking of ferritic steel welds is shown in Fig.
9_38)

8. Superalloys

Opverall Strength

The yield and ultimate tensile strength of nickel-base
superalloys with p/y’ microstructures has been mod-
elled3°#% using the neural network method, as a function
of the Ni, Cr, Co, Mo, W, Ta, Nb, Al, Ti, Fe, Mn, Si,
C, B, and Zr concentrations, and of the test temperature.
The analysis is based on data selected from the published
literature. The trained models were subjected to a variety
of metallurgical tests. As expected, the test temperature
(in the range 25-1100°C) was found to be the most
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significant variable influencing the tensile properties,
both vig the temperature dependence of strengthening
mechanisms and due to variations in the y’ fraction with
temperature. Since precipitation hardening is a dominant
strengthening mechanism, it was encouraging that the
network recognised Ti, Al and Nb to be key factors
controlling the strength. The physical significance of the
neural network was apparent in all the interrogations
performed.

One example illustrating this last point is presented in
Fig. 10. The softening of the y matrix is offset by the
remarkable reversible increase in the strength of the y’
with increasing temperature.

A further revelation from the neural network analysis
came from the error estimates, which demonstrated
clearly that there are great uncertainties in the ex-
perimental data on the effect of large concentrations
of molybdenum on the tensile properties. This has
identified a region where careful experiments are needed;
molybdenum is known to have a large influence on the
y/y' lattice misfit.

9. Fatigue Properties

Fatigue is one of the most difficult mechanical prop-
erties to predict. An extensive literature review has been
carried out to assess methods for predicting the fatigue
crack growth rates.*? This included an examination
of physical models, which where either found to lack
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Fig. 10. Predicted temperature dependence of the yield
strength of a y/y’ superalloy (after Tancret).
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generality or to give only qualitative indications of the
trends.*!*# Experiments on the initiation and prop-
agation of cracks in turbine-disc superalloys have failed
to clarify how fatigue theory could be used to make quan-
titative predictions.

A neural network method has therefore been used after
identifying some 51 variables that could be expected to
influence the fatigue crack growth rate in nickel base
superalloys.*® In fact, it is not difficult to compile an
even larger list of variables which could influence fatigue
properties, but an over ambitious choice of inputs is
likely to reduce the number of data available in the
literature.

The number of inputs chosen is a compromise
between the definition of the problem and the
availability of data. The neural network method
cannot cope with missing values. An over ambitious
choice of input variables will in general limit the
number of complete sets of data available for
analysis. On the other hand, neglect of an important
variable will lead to an increase in the noise
associated with predictions.

The variables studied included the stress intensity range
AK, log{4K} chemical composition, temperature, grain
size, heat treatment, frequency, load waveform, atmo-
sphere, R-ratio, the distinction between short and long
crack growth, sample thickness and yield strength. The
analysis was conducted on some 1 894 data collected from
the published literature. The reason for including both
AK and log{4K} as inputs is because the latter has
metallurgical significance since a plot of the logarithm
of the crack growth rate versus log{4K} is a simple and
well-established relationship. However, there may exist
unknown and separate effects of 4K, in which case that
should be included as an additional input. It is en-
couraging that the trained network in fact assigned
the greatest significance to log{4K}.

If a certain functional relationship is expected be-
tween the raw output and a particular input, than
that input can be included twice, in its functional
form and in its raw form. The inclusion of the latter
prevents bias.
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Fig. 11. Astroloy: (a) effect of grain size alone; (b) effect of heat treatment alone.*®

973

© 1999 ISlJ



ISIJ International, Vol. 39 (1999), No. 10

The model, unlike any experimental approach, could
be used to study the effect of each variable in isolation.
This gave interesting results. For example, it was verified
that an increase in the grain size should lead to a decrease
in the fatigue crack growth rate, when the grain size is
varied without affecting any other input. This cannot be
done in experiments because the change in grain size is
achieved by altering the heat treatment, which in turn
influences other features of the microstructure (Fig. 11).
It was also possible to confirm that log{4K} is more
strongly linked to the fatigue crack growth rate than to
4K, as expected from the Paris law. There are many
other metallurgical trends revealed.*®

The neural network model can in principle be used
to examine the effect of an individual input on the
output parameter, whereas this may be incredibly
difficult to do experimentally.

In another approach*# a different neural computing
approach was used to focus on stage II of the Paris
regime, where the growth rate should depend mainly on
the stress intensity range, Young’s modulus and yield
strength. The model was used successfully in estimating
new test data. The effect of the ultimate tensile strength
and phase stability was also investigated; although this
proved promising, it is probable that the results will be
more convincing when a greater range of data become
available.

Fatigue Threshold

In a recent study of the fatigue thresholds in nickel-base
superalloys, Schooling et al. have attempted to compare
a “neurofuzzy” modelling approach with the classical
neural network.” The application of fuzzy rules to the
network involves the biassing of the inputs according to
human experience.

It was suggested that the fuzzy method has an ad-
vantage with restricted datasets because the complexity
of the relationships can be restricted by the operator.
This conclusion is surprising because the complexity of
a classical neural network, when assessed for generalisa-
tion, naturally tends to be minimised for small datasets.

Schooling et al. found it necessary to make significant
adjustments to the fuzzy rules in order reduce the mean
square error to a value comparable to the classical
network. It is evident that there is considerable operator
bias introduced in designing fuzzy networks. This may
not be satisfactory for complex problems where the actual
relationships are not understood to begin with.

The comparison of the two methods by Schooling et
al. does not seem justified because the predictions of the
neurofuzzy method were not accompanied by error bars
(other than the mean square error).

Creep of Superalloys

The creep rupture life of nickel base superalloys has
been modelled as a function of 42 variables including
Cr, Co, C, Si, Mn, P, S, Mo, Cu, Ti, Al, B, N, Nb, Ta,
Zr, Fe, W, V, Hf, Re, Mg, La and ThO,.*> Other
variables include four heat treatment steps (characterised
by temperature, duration and cooling rate), the sample
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shape and the solidification method.
Sathyanarayanan et al*®) have developed a neural
network model for the “creep feed grinding” of nickel-

‘base superalloys and titanium alloys, using the feed

rate, depth of cut and wheel bond type as inputs, and
the surface finish, force and power as outputs.

Lattice Parameters of Superalloys

The lattice constants of the y and y’ phases of nickel
superalloys have been modelled using a neural network
within a Bayesian framework.*” The analysis was based
on new X-ray measurements and peak separation tech-
niques, for a number of alloys and as a function of tem-
perature. These data were supplemented using the pub-
lished literature.

The lattice parameters of the two phases were expressed
as a non-linear function of eighteen variables including
the chemical composition and temperature. It was pos-
sible to estimate the uncertainties and the method has
proved to be extremely useful in understanding both
the effect of solutes on the lattice mismatch, and on
how this mismatch changes with temperature.

10. Transformations

Martensite-start Temperature

Martensite forms without diffusion and has a well-
defined start-temperature (M), which for the majority
of engineering steels is only sensitive to the chemical
composition of the austenite. There are numerous re-
gression equations in the published literature, which
have been used for many decades in the estimation of
Mg, mostly as a linear function of the chemical com-
position. Vermeulen e al.*® demonstrated that a neu-
ral network model can do this much more effectively,
and at the same time demonstrated clear interactions
between the elements. For example, the magnitude of
the effect of a given carbon content on Mg is much
larger at low manganese levels than at high manganese
concentrations. This is in contrast to all published
equations where the sensitivity to carbon is independent
of the presence of other alloying elements.

Continuous Cooling Transformation Diagrams

The transformation of austenite as the temperature
decreases during continuous cooling has been modelled
with the neural network method using the chemical
composition, the austenitisation temperature and cooling
rate as inputs.*®’ The results were concluded to be
satisfactory but with large errors particularly for the
bainite reaction. These large errors were attributed partly
to noise in the experimental data, to the neglect of
austenite grain size as an input, and to the assumption
that all transformations occur at all cooling rates,
whereas this is not the case in practice.

The network is empirical and hence permits a calcula-
tion of each transformation under all circumstances, even
when this involves extrapolation into forbidden domains.
This difficulty might be avoided by modelling the total
fraction of transformation and the transformation-start
temperatures separately, and then using a logical rule to
determine whether the transformation is real or not.
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A further effect is illustrated by a later study>?; the
neural network calculations of CCT curves as illustrated
in Fig. 12 appear jagged, rather than the expected smooth
curves. This is because the points on the curve are
calculated individually and have been joined without
accounting for errors. If smooth curves are definitely
required, then the experimental curves should be rep-
resented mathematically, and the parameters required
to describe these curves can be used as inputs. There will,
of course, be error bars to be taken into account but
these will be smoothly disposed about the most expected
curve.
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Fig. 12. The effect of carbon on the CCT diagram of an alloy
steel as a function of the carbon concentration.’®
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Austenite Formation

Most commercial processes rely to some extent on
heat treatments which cause the steel to revert into the
austenitic condition. This includes the processes in-
volved in the manufacture of wrought steels, and in the
fabrication of steel components by welding.

The formation of austenite during heating differs in
many ways from those transformations that occur during
the cooling of austenite. Both the diffusion coefficient
and the driving force increase with the extent of superheat
above the equilibrium temperature, so that the rate of
austenite formation must increase indefinitely with
temperature.

There is another important difference between the
transformation of austenite, and the transformation to
austenite. In the former case, the kinetics of transforma-
tion can be described completely in terms of the alloy
composition and the austenite grain size. By contrast,
the microstructure from which austenite may grow can
be infinitely varied. Many more variables are therefore
needed to describe the kinetics of austenite formation.

Gavard et al.>V have created a neural network model
in which the Ac; and Ac; temperatures of steel are
estimated as a function of the chemical composition and
the heating rate. The model has been very revealing; some
of the features are illustrated in Fig. 13. As might be
expected, the Ac, temperature decreases with carbon
concentration reaching a limiting value which is very
close to the eutectoid temperature of about 723°C. This
latter limit is expected because of the slow heating rate
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(a, b) The predicted variation in the Ac, and Ac, temperatures of plain carbon steels as a function of

the carbon concentration at a heating rate of 1°Cs™?. (c,d) The predicted variation in the Ac; and Ac;
temperatures of an Fe—0.2 wt% alloy as a function of the heating rate. In all of these diagrams, the lines
represent the 4 lo error bars about the calculated points. All the results presented here are based on
models with four and two hidden units for the Ac, and Ac, temperatures respectively.
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and the fact that the test steel does not contain any
substitutional solutes. Note that there is a slight un-
derprediction of the Ac; temperature for pure iron,
although the expected temperature of about 910°C is
within the 95 % confidence limits of the prediction (twice
the width of the error limits illustrated in Fig. 13).

By contrast, the Ac; temperature appears to go
through a minimum at about the eutectoid carbon
concentration. This is also expected because the Ae,
temperature also goes through a minimum at the
eutectoid composition. Furthermore, unlike the Ac,
temperature, the minimum value of the calculated Ac,
never reaches the eutectoid temperature; even at the stow
heating rate it is expected that the austenite transforma-
tion finishes at some superheat above the eutectoid
temperature, the superheat being reasonably predicted
to be about 25°C.

At slow heating rates, the predicted A4c, and Ac,
temperatures are in fact very close to the equilibrium
Ae; and Ae; temperatures and insensitive to the rate of
heating. As expected, they both increase more rapidly
when the heating rate rises exceeds about 10°Cs™*. The
significant maximum as a function of the heating rate is
unexpected and is a prediction which suggests that further
experiments are necessary.

Neural network analysis of published data can
help identify experiments in two ways. First, un-
expected trends might emerge. Secondly, the error
bars may be so large as to make the prediction un-
certain, in which case experiments are necessary.

11.  Steel Processing and Mechanical Properties

Hot Rolling

The properties of steel are greatly enhanced by the
rolling process. It is possible to cast steel into virtually
the final shape but such a product will not have the
quality or excellence of a carefully rolled product.

Singh et al.>® have developed a neural network model
in which the yield and tensile strength of the steel is
estimated as a function of some 108 variables, includ-
ing the chemical composition and an array of rolling
parameters. Implicit in the rolling parameters is the
thermal history and mechanical reduction of the slab as
it progresses to the final product. The training data come
from sensors on the rolling mill. There is therefore no
shortage of data, the limitation in this case being the
need to economise on computations. There are some
exciting results which make sense from a metallurgical
point of view, together with some novel predictions on
a way to control the yield to tensile strength ratio. A
similar model by Korczak et a/.>3 uses microstructural
parameters as inputs and has been applied to the
calculation of the ferrite grain size and property dis-
tribution through the thickness of the final plate.

Vermeulen er al.®® have similarly modelled the
temperature of the steel at the last finishing stand. They
demonstrated that it is definitely necessary to use a
non-linear representation of the input variables to obtain
an accurate prediction of the temperature. The control
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of strip temperature on a hot strip mill runout table has
also been modelled by Loney et al.>>

Heat Treatment

A Jominy test is used to measure the hardenability of
steel during heat treatment. Vermeulen et ¢/.>® have been
able to accurately represent the Jominy hardness profiles
of steels as a function of the chemical composition and
austenitising temperature.

Mechanical Properties

There are many other examples of the use of neural
networks to describe the mechanical properties of steels;
Dumortier et al. have modelled the properties of micro-
alloyed steels®”; Mllykoski®®>® has addressed the
problem of strength variations in thin steel sheets; mi-
crostructure-property relationships of C-Mn steels®?;
the tensile properties of mechanically alloyed iron%!:62
with a comparison with predictions using physical
models; the hot-torsion properties of austenite.®>

12.  Polymeric and Inorganic Compounds

Neural network methods have been used to model the
glass transition temperatures of amorphous and semi-
crystalline polymers to an accuracy of about 10K,
and similar models have been developed for relaxation
temperatures, degradation temperature, refractive index,
tensile strength, elongation, notch strength, hardness,
etc.®*7%5 The molecular structure of the monomeric
repeating unit is described using topological indices from
graph theory. The techniques have been exploited, for
example, in the design of polycarbonates for increased
impact resistance. In another analysis, the glass transition
temperature of linear homopolymers has been expressed
as a function of the monomer structure, and the model
has been shown to generalise to unseen data to an
accuracy of about 35K.%7

Comparison with Quantum Mechanical Calculations

There is an interesting study®® which claims that
neural networks are able to predict the equilibrium
bond length, bond dissociation energy and equilibrium
stretching frequency more accurately, and far more
rapidly than quantum mechanical calculations. The work
dealt with diatomic molecules such as LiBr, using thirteen
inputs: atomic number, atomic weight (to include isotope
effects), valence electron configuration (s, p, d, f elec-
trons) for both atoms, and the overall charge. The
corresponding quantum mechanical calculations used
effective core potentials as inputs. It was found that all
three molecular properties could be predicted more
accurately using neural networks, with a considerable
reduction in the computational effort.

Such a comparison of a physical model with one which
is empirical is not always likely to be fair. In general,
an appropriate neural network model should perform
badly when compared with a physical model, when both
are presented with precisely identical data. This is because
the neural network can only learn from the data it is
exposed to. By contrast, the physical model will contain
relationships which have some justification in science,
and which impose constraints on the behaviour of the
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model during extrapolation. As a consequence, the neural
network is likely to violate physical principles when used
without restriction. The continuous cooling transforma-
tion curve model discussed above*®*? is an example
where the neural network produces information in
forbidden domains and produces jagged curves, which a
physical model using the same data would not because
the form of the curves would be based on phase
transformation theory [e.g. Ref. 69)].

13. Ceramics

Ceramic Matrix Composites

Ceramic matrix composites rely on a weak interface
between the matrix and fibre. This introduces slip and
debonding during deformation, thus avoiding the catas-
trophic propagation of failure. The mathematical treat-
ment of the deformation has a large number of variables
with many fitting parameters. For an Al,O; matrix SiC
whisker composite a constitutive law has been derived
using an artificial neural network, using inputs generated
by finite element analysis,”®

Hybrid models can be created by training neural
networks on data generated by physical models.

Machining and Processing

There are many examples where neural networks have
been used to estimate machine-tool wear. For example,
Ezuguwu et «l.’V have modelled the tool life of a
mixed-oxide ceramic cutting tool as a function of the
feed rate, cutting speed and depth of cut. Tribology
issues in machining, including the use of neural networks,
have been reviewed by Jahanmir,”?

Neural networks are also used routinely in the control
of cast ceramic products made using the slip casting
technique, using variables such as the ambient conditions,
raw material information and production line settings.”?
In another application, scanning electron microscope
images of ceramic powders were digitised and processed
to obtain the particle boundary profile; this informa-
tion was then classified using a neural approach, with
exceptionally good results even on unseen data.’

14. Thin Films and Superconductors

A lot of the materials science type issues about thin
films naturally involve deposition and characterisation.
The deposition process can be very complicated to con-
trol and is ideally suited for neural network applica-
tions.

Neural networks have been used to interpret Raman
spectroscopy data to deduce the superconducting
transition temperature of YBCO thin films during the
deposition process’®; to characterise reflection high-
energy electron diffraction patterns from semiconductor
thin films in order to monitor the deposition process’®;
to rapidly estimate the optical constants of thin films
using the computational results of a physical model of
thin films’”; and there are numerous other similar
examples.
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There is one particular application which falls in the
category of ““alloy design™; Asada et al.”® trained a
neural network on a database of (Y,_,Ca,)Ba,Cu;0,
and Y(Ba,_ ,Ca,)Cu;0,, where z is generally less than
7, the ideal number of oxygen atoms. The output pa-
rameter was the superconducting transition tempera-
ture as a function of x and z. They were thus able to
predict the transition temperature of YBa,Cu;0, doped
with calcium. It was demonstrated that the highest
temperature is expected for x=0.3 and z=6.5 in
(Y,-.Ca,)Ba,Cu;0, whereas a different behaviour oc-
curs for Y(Ba,_,Ca,)Cu,0,.

15. Composites

There are many applications where vibration informa-
tion can be used to assess the damage in composite
structures e.g.”® =8V Acoustic emission signals have been
used to train a neural network to determine the burst
pressure of fiberglass epoxy pressure vessels.®? There has
even been an application it the detection of cracks in
eggs.8¥

One different application is in the optimisation of the
curing process for polymer-matrix composites made
using thermosetting resins.®* An interesting applica-
tion is the modelling of damage evolution during forging
of Al-SiC particle reinforced brake discs.®> The authors
were able to predict damage in a brake component
previously unseen by the neural network model.

Hwang et al.®® compared a prediction of the failure
strength of carbon fibre reinforced polymer composite,
made using a neural network model, against the Tsai-Wu
theory and an alternative hybrid model. Of the three
models, the neural network gave the smallest root-mean
square error. Nevertheless, the earlier comments about
the validity of the neural network in extrapolation ezc.
remain as a cautionary note in comparisons of neural
and physical models.

16. Publication

The application of neural networks in materials science
is a rapidly growing field. There are numerous papers
being published but the vast majority are of little use
other than to the authors. This is because the publications
almost never include detailed algorithms, weights and
databases of the kind necessary to reproduce the work.
Work which cannot be reproduced or checked goes
against the principles of scientific publication.

The minimum information required to reproduce a
trained network is the structure of the network, the nature
of the transfer functions, the weights corresponding to
the optimised network and the range of each input and
output variable. Such detailed numerical information is
unlikely to be accepted for publication in journals. There
is now a world wide web site where this information can
be logged for common access:

www.msm.cam.ac.uk/map/mapmain.html

It is also good practice to deposit the datasets used in
the development of neural networks in this materials
algorithms library.?7?
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17. Summary

Neural networks are clearly extremely useful in recog-
nising patterns in complex data. The resulting quantita-
tive models are transparent; they can be interrogated
to reveal the patterns and the model parameters can
be studied to illuminate the significance of particular
variables. A trained network embodies the knowledge
within the training dataset, and can be adapted as
knowledge is accumulated.

Neural network analysis has had a liberating effect on
materials science, by enabling the study of incredibly
diverse phenomena which are not as yet accessible to
physical modelling. The methodology is used extensively
in process control, process design and alloy design. It is
a technique which should now form a standard part of
the undergraduate curriculum.
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