Quasichemical model for interstitial solutions

H. K. D. H. Bhadeshia

An ideal solution is one in which the enthalpy of mixing is zero so that the only contribution to the free energy of mixing comes
from the change in configurational entropy when atoms mix at random. Regular solutions have a finite enthalpy of mixing but
nevertheless assume random mixing. Quasichemical models avoid this approximation of random mixing. The present study deals
with an amendment to some of the equations in the quasichemical theory for Fe—C solutions, making the equations, for example,

more reliable at large C—C repulsions.
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Introduction

The regular solution model assumes a random distribution
of atoms even though the enthalpy of mixing is not zero.
In reality, a random solution is only expected at very high
temperatures when the entropy term overwhelms any
tendency for ordering or clustering of atoms. It follows
that the configurational entropy of mixing should therefore
vary with the temperature. The quasichemical solution
model has a better treatment of configurational entropy
which accounts for a non-random distribution of atoms.
The model is so called because it has a mass action
equation which is typical in chemical reaction theory.'?

There is a particularly useful application of the quasi-
chemical model to the solution of carbon in austenite.® The
theory is founded on the fact that there is a repulsion
between the carbon atoms which has the effect of reducing
the probability by which a neighbouring interstitial site is
occupied. The history of such ‘site exclusion models’ has
been reviewed by McLellan and Dunn?* Their model,
which removes many of the difficulties of earlier treatments,
is the subject of the present study. Furthermore, the model
appears to have considerable physical significance, both in
explaining fine detail in thermodynamic data and in the
prediction of diffusion phenomena.

The purpose of the present work is to correct a subtle
difficulty with the McLellan and Dunn model3* which
does not scem to cope well with the limit of infinite
repulsion, and is not consistently developed in its zeroth
and first order approximations. (The zeroth approximation
of quasichemical theory is identical to a regular solution
model.) The theory is generally applicable but will be
discussed in the context of Fe—C solutions. Almost half of
the paper is devoted to a repetition of published work in
order to introduce a subject which is not commonly known
in metallurgy.

Theory

PARTITION FUNCTION

The general methodology is summarised in Fig. 1. The
essential problem in the construction of a quasichemical
model is the partition function. Although the function is
standard theory, its meaning is introduced below for the
sake of readability.

Consider a total number of atoms N in a system where
there are just two energy levels. At any finite temperature
a number of atoms N, are in the ground state, whereas a
number N; (=N — N,;) belong to the higher level with an
energy E; relative to the ground state. The fraction of

atoms in the two states at a temperature T and at zero
pressure is given by
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where g; represents the degeneracy of the ith energy
level. The degeneracy gives the number of states with the
same energy. In each of these equations, the term in the
denominator is called the partition function €; in general,
for a multilevel system
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where E; is the energy relative to the ground state.

CARBON IN AUSTENITE

The treatment that follows is due to McLellan and Dunn.®*
Carbon dissolves interstitially in the octahedral holes in
the crystal structure of the austenite. The number of Fe-Fe
pairs and the number of Fe-C pairs does not change for a
given composition for all configurations. The partition
function can therefore be described solely in terms of the
carbon atoms u in the octahedral sites ug,.

Consider a system with N, carbon atoms, N, iron
atoms, and therefore f§; Ng, octahedral sites where f; is the
number of octahedral interstices per iron atom (f; =1 for
octahedral holes in austenite and f;=3 for octahedral
interstices in ferrite). The variety of pairs of species is listed
in Table 1, where the number of u-u, and u,—u pairs is
written W4, where W= 12 (for austenite) is the number of
octahedral sites around a single such interstice. Naturally,
W is the same for the carbon atoms.

The configurational partition function using the data
listed in Table 1 is, therefore
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For a given value of /, the different non-interacting pairs
of atoms can be arranged in the following number of ways
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Categorise and count the variety of atom-atom or
atom-vacancy pairs possible

Estimate the configurational energy arising from the
pairwise interactions

Write the configurational partition function
Discover the degeneracy for each configuration

Normalise the degeneracy function to ensure that the grand
summation of all degeneracies is the total number of
possible configurations

Replace the summation in the partition function by its
largest term

Derive required thermodynamic functions from the partition
function

Deal with any excess thermodynamic quantities not
described by a consideration of configurations

1 Steps involved
solution model

in construction of quasichemical

It is usual to convert this proportionality into an equality
using a normalisation procedure which considers the
degeneracy of a completely random solution, for which 2
has the value A* given by the product of the number of
solute atoms N, and the chance of finding an unoccupied
octahedral site
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The partition function Q is now solved, but to proceed and
obtain some useful thermodynamic quantities, the normal
approximation is followed which replaces the summation
in equation (2) by the largest term corresponding to 2= 4,
which can be obtained by differentiation with respect to 2
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Table 1 Pair interactions in y-Fe-C quasichemical model
(after McLellan and Dunn?®); energy zero is for
an atom at rest in a vacuum so that the energies
listed are numerically negative
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and @, = &,, — 2¢, is the carbon-carbon (repulsive) inter-
action energy. The partition function now becomes
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which clearly reduces to a partition function for a random
solution when 4= 2*. This can happen when the temper-
ature is very high so that thermal agitation mixes up the
atoms Irrespective of their binding tendencies. The con-
figurational free energy F and chemical potential u follow
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To obtain the configurational part of the chemical potential,
MecLellan and Dunn took (using Stirling’s approximation)
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Noting that We,, /2 = We, + W, /2, the chemical potential
per atom is given by
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The term We, is interpreted as the partial energy of solution
of carbon in austenite at infinite dilution, a component of
U in pt = piy+ RT In(a) where a is the activity. The activity
of carbon is in the derivation, with respect to pure carbon
with the crystal structure of austenite. It is more convenient
to define the activity of carbon relative to pure graphite as
the standard state. This is easily done, since
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where Apl is the change in free energy accompanying the
transfer of carbon from its standard state of graphite to
the standard state based on an infinitely dilute solution as

. (13)
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2 Variation of experimentally determined relative partial
free energy of carbon in solution in austenite, with
respect to pure graphite at infinite dilution: after
Ban-ya et al.>®
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the references state (it is also called the relative partial free
energy of a solute atom in solution with respect to the pure
solute at infinite dilution). The value of Au® is determined
experimentally from thermodynamic data measured at
sufficiently low concentrations (Fig. 2).

It follows that the activity of carbon with respect to
graphite is, according to McLellan and Dunn
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Note that the term containing ¢, is absorbed in Au® All
the work described above is already available in the
published literature 3+*

DIFFICULTY

There is a difficulty in the particular derivation of the
chemical potential presented above because A* and / are
assumed, in the process of differentiation (equation (11)),
not to be functions of N,, which they clearly are. This
is also inconsistent with other work on a zeroth order
quasichemical model.” Therefore a version is developed
here which allows for the dependence of A on N, (cf.
equation (11))
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The configurational chemical potential thus becomes
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and the activity of carbon in austenite with respect to
graphite is
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Note that the term with We, is again absorbed into Au°.

It has been verified that the new equations are numerically
virtually identical when compared against those derived by
MecLellan and Dunn for realistic values of the thermo-
dynamic parameters and concentrations. Large differences
occur when the interaction energies become strongly
repulsive, as might be expected since the McLellan and
Dunn equation (11) has a term (0/8;) — (A/Ng.ff;) in the
denominator, which tends to zero as the solumon becomes
random. Large repulsive energies are believed to occur
for carbon in ferrite. The following shows that the new
equation does not suffer from this difficulty for limiting
cases.

DILUTE SOLUTION, w,—0 LIMIT

In the limit that , tends to zero, .—/* and
A—1—2(0/B;). Noting that o, , = &uy — 2£,, it can be seen
that in this limit equation (17) bccomes

0/
1—(0/B;)

Naturally, 7 must also tend to A* at high temperatures so
that the high temperature limit of this first order quasichem-
ical theory will then become equivalent to the zeroth order
mixing treatment where the solute atoms are distributed
at random.”

plw,—0)= len[ :I + We, + W(0/B;)ow,  (18)

Materials Science and Technology April 1998 Vol. 14



276 Bhadeshia Quasichemical model for interstitial solutions

INFINITE REPULSION LIMIT

In this case, as w,— o, J.— N, and / — 1. Therefore
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which, at values of 6 sufficiently small to allow the
expansion In(1— )~ —§, can be rewritten as

1—(W+1)(6/B;)

This is consistent with all the interstitial sites adjacent to a
carbon atom being blocked from occupation. Notice that
the term —W(0/f;)w, is absent from all these complete
blocking equations since there are no carbon—carbon near
neighbouring pairs in that scenario.
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ZEROTH ORDER QUASICHEMICAL MODEL

The zeroth approximation of quasichemical theory has the
solute atoms distributed at random. The partition function
and all associated functions for the zeroth order treat-
ment can be deduced from the corresponding equations
for the first order treatment simply by setting A= /i*
It is nevertheless interesting to compare the first and
zeroth approximations as was first reported by Alex and
McLellan.”

From equation (2), the partition function is obtained as
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On substituting for 4* (equation (4)) and ¢,, this becomes
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It is worth emphasising again that this substitution for i*
recognises implicitly that A* is a function of N,. This is in
contrast to the first order quasichemical theory by Dunn

and McLellan,* where during the differentiation of the
partition function with respect to N,, 1 was treated as a
constant. The comparison reported by Alex and McLellan’
is therefore between models based on different assumptions.
The comparison reported in this study is, on the other
hand, with the corrected first order quasichemical theory.
The configurational chemical potential therefore becomes
0/p; 6
= — We, + Wao, — .
U len[l —(U.r"'ﬁ;)] + We, + W, 5 (23)
which is consistent with a regular solution model (ic. the
zeroth approximation).

Conclusions

A better behaved set of equations has been derived for the
quasichemical representation of Fe—C solutions. Although
this makes negligible numerical difference to the chemical
potential of carbon in austenite over the typical range of
interest, the equations give the correct limit when the
carbon-carbon interaction energy becomes very large.
Unlike in the earlier model, the new equations are also
consistent with the details in the formulation of the zeroth
approximation of the quasichemical model.
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