
        

New Welding Alloys: Computational Methods
L.–E. Svensson and H. K. D. H. Bhadeshia

Metals are useful materials because of their sophistication and low cost. The many phase
transformations and processing variables associated with them can be exploited to achieve a
very large range of desirable properties. The very complexity that makes metals so useful also
makes their design difficult. This is particularly so for welding alloys which have an additional
level of complexity given that the ultimate properties have to be achieved in the as–welded
condition.

The modelling of welds is a vast subject covering arc physics, heat and fluid flow, solidification,
solid–state transformations and the development of mechanical properties for the fusion zone,
the heat–affected zones and the joint as a whole (Table 1). The present paper focusses on just
one of these aspects, the structure and properties of the fusion zone in steel welds.

Arc phenomena Plasma processes

Vapourisation Heat transfer

Fluid flow Surface tension effects

Mass transfer Gas absorbtion

Oxidation phenomena Flux–metal interactions

Solid–state transformations Tempering reactions

Mechanical property models Joint integrity

Table 1:Variety of topics covered in the general subject of weld modelling.

The Variables

The majority of welding alloys are produced for the fabrication of structural steels. The
engineering requirements are usually expressed in terms of a specified yield strength, ductility
(elongation and reduction of area) and the toughness (Charpy tests or KIC measurements).
The toughness is a prime requirement in most cases but particularly for service at sub–zero
temperatures.

The variables affecting these properties include the chemical composition which might include
deliberate additions of C, Mn, Si, and Ni as elements which primarily influence the stability
of the variety of phases. Trace additions such as titanium and boron are usually in concentra-
tions so small that they do not affect phase stability per se but instead have profound kinetic
effects, for example by segregation to interfaces. There are also the “impurity” elements, such
as phosphorus, sulphur, nitrogen, oxygen and aluminium which have complex consequences
on the microstructure and mechanical properties. The welding process determines the solid-
ification microstructure and cooling conditions, and hence influences the final properties. In
arc welding the parameters of importance include the welding current, voltage, speed and in-
terpass or preheat temperature. The welded joint in structural steels is rarely heat treated
after fabrication so that tempering reactions need not be taken into account except in the
context of multirun welds where the sequential deposition of layers causes incipient heating of
the underlying weld metal.
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How does one begin to calculate the engineering parameters as a function of this myriad of
variables? Surprisingly, the answer begins with a consideration of equilibrium!

Equilibrium

Equilibrium is a state in which there is no perceptible change no matter how long the system
is observed. It takes time to approach equilibrium. The transfer of metal from an electrode,
through an arc plasma, into the weld pool and finally its incorporation into the solid state
occurs in a matter of seconds. This is not conducive to the achievement of equilibrium so it is
reasonable to wonder why, in the context of welding, one should bother with thermodynamics
at all.

The reason is simple: a system which is not at equilibrium may still have the characteristics of
equilibrium on a local scale. Thus, a ball which is falling at a steady rate is not at equilibrium
but an observer located on the ball will not see any change in the local environment as the ball
falls. Similarly, phases such as ferrite frequently occur with local equilibrium at the moving
transformation front.

Thermodynamic parameters are therefore essential inputs to kinetic theory, which describes the
rate of approach to equilibrium. Thermodynamics also helps reduce the number of variables,
for example by expressing the combined effect of carbon and manganese in terms of their effect
on the relative stabilities (free energies) of the austenite and ferrite. The method thus “links
together many variables so that they can be seen to be a consequence of a few”.

Most people are familiar with phase diagrams, which give equilibrium phase fractions and the
compositions of the phases as a function of solute content and temperature. Such diagrams
become difficult to conceive in more than three dimensions. Thus, for steels with many alloy-
ing elements we have to be satisfied with just the numerical information on phase fractions
and compositions. This is the friendly output of phase diagram calculations. There is other
information which is of value in seeing what drives transformations.

Fig. 1 shows an example of phase diagram calculations which form an input to the kinetic
theory which is essential in estimating the development of microstructure. Calculations like
these can now be carried out routinely for alloys with many solutes, for example the duplex
stainless steel, hardfacing alloys in addition to the vast range of low alloy steels.

Rate

The simplest assumption in kinetic theory is to take a “flux” to be proportional to a “force”.
The flux could represent an interface velocity, an electrical current or a heat flux, with the
driving force, the electromotive force and temperature gradient representing the corresponding
forces. The assumption of proportionality is probably reasonable for small departures from
equilibrium. The proportionality can be generalised, so that a given flux can be expressed as
a function of a combination of forces. In a ternary Fe–Mn–C alloy, the diffusion flux of carbon
depends not only on the gradient of carbon, but also on that of manganese. Consequently,
a uniform distribution of carbon will tend to become inhomogeneous in the presence of a
manganese concentration gradient. Similarly, the flux of heat can be driven by an electromotive
force (Peltier effect).

If the mechanism of a transformation is known, it is possible to apply kinetic theory to model
the development of microstructure. An example for welding is illustrated in Fig. 2. The calcu-
lations have over many years proved to be sufficiently reliable for the models to be used rou-
tinely in industry, both for alloy design and to address customer queries with confidence. The
experimental determination of the data illustrated in Fig. 2 would cost in excess of £100,000.
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Fig. 1: Calculated isothermal section of the Fe–Mn–C phase diagram illus-

trating how the ferrite (α) and austenite (γ) phase field changes with solute

concentration and temperature. The end points of the dotted lines represent

the compositions of the austenite and ferrite which are in equilibrium. It

has been possible to do such calculations for multicomponent steels for many

decades.

EMPIRICAL MODELS

The physical models described above are capable of predicting entirely new phenomena. But
there are difficult problems where the general concepts might be understood but which are
not as yet amenable to mathematical treatment. We are at the same time told that good
engineering has the responsibility to reach objectives in a cost and time–effective way. Any
model which treats a small part of the required technology is therefore unlikely to be treated
with respect. Empiricism can in these circumstances be extremely useful in filling in any gaps
whilst striving for longer term solutions.

Most people are familiar with regression analysis where data are best–fitted to a specified
relationship which is usually linear. The result is an equation in which each of the inputs
xj is multiplied by a weight wj ; the sum of all such products and a constant θ then gives
an estimate of the output y =

∑
j wjxj + θ. Relationships like these are used widely in the

welding industry, for example, in the formulation of the famous carbon equivalents:
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Fig. 2: Calculated microstructures of manual metal arc weld deposits as a

function of chemical composition. The boron concentration makes a remark-

able difference to the microstructure.
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or in the expression of mechanical properties as a function of the chemical composition (Evans
et al.):

yield strength / MPa = 484 + 57× wCu
where wCu is the weight percent of copper in as–welded “carbon–manganese” manual metal
arc welds. It is well understood that there are dangers in using such relationships beyond the
range of fitted data. This is highlighted, for example, by the need to use a variety of carbon
equivalent equations for different steels.

A more general method of regression is neural network analysis. As before, the input data xj
are multiplied by weights, but the sum of all these products forms the argument of a hyperbolic
tangent. The output y is therefore a non–linear function of xj , the function usually chosen
being the hyperbolic tangent because of its flexibility. The exact shape of the hyperbolic
tangent can be varied by altering the weights (Fig. 3a). Further degrees of non–linearity can
be introduced by combining several of these hyperbolic tangents (Fig. 3b), so that the neural
network method is able to capture almost arbitrarily non–linear relationships. For example, it
is well known that the effect of chromium on the microstructure of steels is quite different at
large concentrations than in dilute alloys. Ordinary regression analysis cannot cope with such
changes in the form of relationships.

In the absence of a physical understanding, many models can in general be created to represent
the same data. During the fitting of each model to the data, statistical methods such as that
of Bayes can be used to infer the most probable parameter values and the error bars on those
parameters. The sensible use of error bars reduces the danger of extrapolation or interpolation.
Such error estimates are illustrated in the example given below. MacKay has shown that the
Bayesian framework also permits different models to be distinguished on the bases of their
complexity, with an automatic penalty to over complex methods. This follows the principle of
the famous Occam’s razor, that there should be a preference for simple theories. We should
adopt the most simple explanation because such an explanation has beauty and because simple
theories seem to be successful.

Fig. 3: (a) Three different hyperbolic tangent functions; the “strength” of

each depends on the weights. (b) A combination of two hyperbolic tangents

to produce a more complex model.

A potential difficulty with the use of powerful regression methods is the possibility of overfitting
data (Fig. 4). For example, it is possible to produce a neural network model for a completely
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random set of data. To avoid this difficulty, the experimental data can be divided into two
sets, a training dataset and a test dataset. The model is produced using only the training
data. The test data are then used to check that the model behaves itself when presented with
previously unseen data.

Fig. 4: A complicated model may overfit the data. In this case, a linear

relationship is all that is justified by the noise in the data.

Neural network models in many ways mimic human experience and are capable of learning or
being trained to recognize the correct science rather than nonsensical trends. Unlike human
experience, these models can be transferred readily between generations and steadily developed
to make design tools of lasting value. These models also impose a discipline on the digital
storage of valuable experimental data, which may otherwise be lost with the passage of time.

An example of the use of a neural network model in predicting the strength of steel weld
deposits, as a function of a very large number of variables, is illustrated in Fig. 5. The
inputs included the detailed chemical composition (almost twenty elements), heat treatment
and welding parameters. Models like these have been trained for many complex phenomena
for which physical models do not exist; the fatigue strength of nickel–base superalloys, the
formation of austenite during the heating of steels, the toughness of arc welds etc. They are
particularly powerful in serving as a bridge between microstructure and mechanical properties.

.

PROGRESS

“Modelling” has now become a very prominent subject not only in welding but in materials
science as a whole. There are many university departments which specialise in the subject
and there are numerous examples of similar work in industry. It is a very attractive area for
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Fig. 5: The neural network predicted versus measured yield strength for a

variety of welds previously unseen by the model.

collaboration between universities and industry because it combines the excitement of science
with the focus on complex technological issues.

To help in making the subject accessible to a wider audience, there now exists a perpetual
electronic library accessible via the world wide web:

http : //www.msm.cam.ac.uk/map/mapmain.html

It contains elementary subroutines that can enable a user to develop new concepts using
existing methods as a foundation. It is intended to make established work much more accessible
and usable in both research and development projects. It embodies the essential features of
publications, that the code included is validated, documented and open to scrutiny by the
scientific and industrial communities.

The growth of the subject will only be sustained in the long term if it is seen to produce results
which are useful to the entire community, not just one partner in the industry/university
alliance.
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