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ABSTRACT

Charpy impact toughness data for manual metal arc and submerged arc weld metal samples

have been analysed using a neural network technique within a Bayesian framework. In this, the

toughness can be represented as a general empirical function of variables that are commonly

acknowledged to be important in influencing the properties of steel welds. The method has

limitations due to its empirical character, but it is demonstrated here that it can be used in

such a way that the predicted trends make metallurgical sense. The method has been used to

examine the relative importance of the numerous variables thought to control the toughness

of welds.

INTRODUCTION

Fusion welding is of the greatest importance in the fabrication of engineering structures. One

of the most important requirements for such structures, including all the welded joints, is that

they should be able to resist brittle fracture. The weld deposits therefore have to be “tough”

with a great deal of energy being absorbed by the metal during the process of fracture.

A test used to characterise toughness is the Charpy test, in which a square sectioned,

notched bar is fractured under specified conditions [1]. The energy absorbed during fracture is

taken as a measure of toughness. The Charpy test is empirical in that the data cannot be used

directly in engineering design. It is nevertheless a useful quality control test which is specified

widely in international standards, and in the ranking of samples in research and development

experiments.

The toughness of a steel depends on many variables, and that of a weld on many more

because of the complexity of the welding process. It is not yet possible to predict the Charpy

toughness of a weld with any reliability. The usual approach is to correlate the results against

chosen variables using linear regression analysis [e.g. 2]. These methods are known to be

severely limited in their application.
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Therefore, the most important mechanical property for welds has not been rationalised

quantitatively as a function of the complex array of variables associated with welding. However,

it is known from experience, and from the concepts of fracture mechanics, that certain variables

are more important than others in their effect on toughness. The purpose of the work presented

here was to see whether an artificial neural network [3] can be trained to predict weld toughness

as a nonlinear function of these variables, and to see whether the patterns that emerge from

the work emulate metallurgical experience.

In normal regression methods the analysis begins with the prior choice of a relationship

(usually linear) between the output and input variables. A neural network is capable of realising

a greater variety of nonlinear relationships of considerable complexity. Data are presented

to the network in the form of input and output parameters, and the optimum non–linear

relationship is found by minimising a penalized likelihood. The network in effect tries out

many kinds of relationships in its search for an optimum fit. As in regression analysis, the

results then consist of a specification of the function, which in combination with a series of

coefficients (called weights), relates the inputs to the outputs. The search for the optimum

representation can be computer intensive, but once the process is completed (i.e. the network

trained) the estimation of the outputs is very rapid. In spite of its apparent sophistication, the

method is as blind as regression analysis, and neural nets can be susceptible to overfitting.

However, much of this danger can in principle be minimised or eliminated by combining

the neural network approach with sound statistical and metallurgical theory. MacKay [4–

7] has developed a Bayesian framework for neural networks. This framework allows one to

assess quantitatively the relative probabilities of models of different complexity, and to put

quantitative error bars on the predictions of the models. We have applied this work to the

complex problem of predicting weld metal toughness.

VARIABLES

It is possible to choose a set of variables which should, using experience of welding metallurgy,

have an influence of the Charpy toughness. These variables are listed in Table 1, and described

below.

In general, the toughness decreases as the strength increases. This is because plastic

deformation, which is the major energy absorbtion mechanism during fracture, becomes more

difficult as the strength increases. Hence, the yield strength is included as a variable. The

nature of the welding process itself may have a significant effect on toughness. For example, the

submerged arc welding process is quite different from the manual metal arc welding process,
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Variable Range Mean Standard

Deviation

Process Submerged Arc

Manual Metal Arc

Yield Strength MPa 347–645 471 12.7

Carbon wt.% 0.029–0.13 0.08 0.004

Silicon wt.% 0.28–1.14 0.49 0.05

Manganese wt.% 0.77–2.50 1.32 0.07

Phosphorus wt.% 0.008–0.028 0.015 0.001

Sulphur wt.% 0.002–0.017 0.010 0.0005

Aluminium wt.% 0.001–0.04 0.014 0.002

Nitrogen p.p.m.w. 26–119 67 4

Oxygen p.p.m.w. 234–821 412 30

Primary Microstructure % 0–91 34 4

Secondary Microstructure % 9–100 66 2

Allotriomorphic Ferrite % 16–62 31 2

Acicular Ferrite % 11–81 55 2

Widmanstätten Ferrite % 0–35 14 2

Temperature K 213–293 259 25

Charpy Toughness J 4–215

Table 1: The variables. The abbreviation p.p.m.w. stands for parts per

million by weight.

leading to the development of different microstructures and variations in impurity content.

However, heat input per se is not included since its effect is via the microstructure [8–12],

which is included in detail in the analysis.

The major solute additions to steels, i.e. C, Mn and Si, have large effects on the trans-

formation behaviour and strength. Impurity elements (P, S, Al, N, O) are included because

of their known tendency to embrittle or because of their importance in the formation of non-

metallic inclusions in welds.

All fusion welding processes involve the deposition of a small amount of molten steel

within a gap between the components to be joined. When the steel solidifies, it welds the

components together. The fusion zone represents both the deposited metal and the parts of
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the steel component melted during the process, and is a solidification microstructure, often

called the primary microstructure. In practice, the gap between the components to be joined

has to be filled by a sequence of several weld deposits. These multirun welds have a com-

plicated microstructure. The deposition of each successive layer heat–treats the underlying

microstructure. Some of the regions of original primary microstructure are reheated to tem-

peratures high enough to cause the reformation of austenite, which during the cooling part

of the thermal cycle transforms into a different microstructure. Other regions may simply be

tempered by the deposition of subsequent runs. The microstructure of the reheated regions is

called the reheated or secondary microstructure. The fractions of the primary and secondary

microstructures are included as input variables (Table 1).

In addition, the details of the primary microstructure are also included in the list of input

variables, since the phases involved (allotriomorphic, Widmanstätten and acicular ferrite) are

known to have a major influence on the weld properties.

Iron undergoes a ductile–brittle transition as a function of temperature [1]. The flow stress

of iron is sensitive to temperature, the strength increasing as the temperature decreases. At

some critical temperature, it becomes easier to cleave iron without expending much energy.

Below this critical temperature, the iron behaves in a very brittle manner. Hence, the test

temperature is included as an important variable.

All of these input variables should to varying degrees influence the Charpy toughness,

which is the output variable.

EXPERIMENTAL DATA

All of the data used in the analysis are from experiments conducted at the ESAB Central

Research Laboratories [13–15]. These data represent a total of 181 different combinations of

the variables listed in Table 1, from all–weld metal tests in which the joints were deposited to

ISO2560 specification as described elsewhere [11]. In this specification, the joint geometry is

such that there is a minimal dilution of the weld metal, so that experiments can be conducted

on all–weld samples. Hence, the development of welding electrodes is usually carried out using

this joint design. References 13 and 15 contain data on manual metal arc welds where as

Ref. 14 deals with submerged arc welds. All of these welds are typically classified as carbon–

manganese welds, because they do not contain deliberate additions of elements such as nickel,

boron etc.

The manual metal arc welds were deposited in the flat position using the stringer bead

technique, the parent plate thickness being 20 mm. The welding current and voltage used
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were 190 A and 23 V respectively, the weld consisting of some 27 runs with 3 runs per layer

deposited at a speed of 0.004 m s−1. The interpass temperature was typically 250 ◦C. The

electrodes used were 4 mm in diameter.

The submerged arc welds were fabricated to the same geometry, but with a variety of

proprietary wires and flux combinations. The wires were of 4 mm diameter (OK Autrod 12.10,

12.22 & 12.32) and the fluxes included OK Flux 10.61, 10.71 and 10.81. The terms in italics are

trade marks of ESAB AB – there is nothing special about these consumables but is worth noting

that they are all commonly used in welding mild steels. The significant welding parameters

are listed in Table 2; the interpass temperature was about 250 ◦C in each case.

Current Amps Voltage No. of Beads Welding Speed m s−1

450 30 14–16 0.007

550 30 12 0.007

650 30 10 0.007

Table 2: Welding parameters for the submerged arc welds.

The tests have been carried out over a number of years with the systematic measurement

of all of the important parameters discussed earlier. However, the fraction of primary and

secondary microstructure was not measured for the data in [14]. These fractions were therefore

calculated as described in [9,16].

The routine method for quantitative metallography has been described previously [11],

and the mechanical property measurements were carried out to ISO2560 specification. The

Charpy value used in the analysis represented the mean of between three to five tests.

ANALYSIS

The analysis was conducted using variables normalised between +0.5 and -0.5; this normali-

sation is not essential to the neural net approach but allows a convenient comparison of the

influence of individual input variables on an output. The normalisation procedure is expressed

quantitatively as follows:

xN =
x− xmin

xmax − xmin

− 0.5 (1)

where xN is the normalised value of x; xmin and xmax are respectively the minimum and

maximum values of x in the entire dataset (Table 1).

The normalisation is straightforward for all the quantitative variables; however, the weld-

ing process was represented by assigning a value of +0.5 to submerged arc welding, and -0.5
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INPUTS

HIDDEN UNITS

OUTPUT UNIT

to manual metal arc welding.

The network consisted of fourteen input nodes, a number of hidden nodes and an output

node representing the toughness (Fig. 1). The network was trained using a randomly chosen

100 of the examples from a total of 181 available, the remaining 81 examples being used as

‘new’ experiments to test the trained network.

Fig. 1: A typical network used in the analysis. Only the connections orig-

inating from one input unit are illustrated, and the two bias units are not

illustrated.

Linear functions of the inputs xj are operated on by a hyperbolic tangent transfer function:

hi = tanh
(∑

j

w(1)
ij xj + θ(1)

i

)
(2)

so that each input contributes to every hidden unit. The bias is designated θi and is analogous

to the constant that appears in linear regression. The strength of the transfer function is in

each case determined by the weight wij . The transfer to the output y is linear:

y =
∑

i

w(2)
i hi + θ(2) (3)

This specification of the network structure, together with the set of weights is a complete

description of the formula relating to the inputs to the output. The weights are determined

by training the network; the details are described elsewhere [4–7]. The training involves a

minimisation of the regularised sum of squared errors. The term σν used below is the framework

estimate of the noise level of the data.

The complexity of the model is controlled by the number of hidden units (Fig. 2), and the

values of the 16 regularisation constants (σw), one associated with each input, one for biases

and one for all weights connected to the output.
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Fig. 2: Variation in σν as a function of the number of hidden units. Several

values are presented for each set of hidden units because the training for each

network was started with a variety of random seeds.

Fig. 2 shows that the inferred noise level decreases monotonically as the number of hidden

units increases. However, the complexity of the model also increases with the number of hidden

units. A high degree of complexity may not be justified, and in an extreme case, the model

may in a meaningless way attempt to fit the noise in the experimental data. MacKay [4–7]

has made a detailed study of this problem and has defined a quantity (the evidence) which

comments on the probability of a model. In circumstances where two models give similar

results over the known dataset, the more probable model would be predicted to be that which

is simpler; this simple model would have a higher value of ‘evidence’. The evidence framework

was used to control the regularisation constants and σν . The number of hidden units was set

by examining performance on test data. A combination of Bayesian and pragmatic statistical

techniques were therefore used to control the model complexity. Four hidden units were found

to give a reasonable level of complexity to represent the variations in toughness as a function

of the input variables. Larger numbers of hidden units did not give significantly lower values

of σν ; indeed, the test set error goes through a minimum at four hidden units (Fig. 3).

The optimum parameters for one trained network are presented in Table 3; this listing

would be required in order to reproduce the predictions described, though not the error bars.

The levels of agreement for the training and test datasets are illustrated in Fig. 4, which show

good prediction in both instances. It should be emphasized that the test data were not included
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Fig. 3: The test error as a function of the number of hidden units.

in deriving the weights given in Table 3 (except to choose the solution displayed), so that the

good fit is established to work well over the range of data included in the analysis.
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Training

dataset

Test
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Fig. 4: Plot of the estimated versus measured toughness; (a) training dataset;

(b) test dataset.

USE OF THE MODEL

We now examine the metallurgical significance of the results. We attempt predictions out of

the range of the experimental data used during training, and examine some aspects which

cannot be studied experimentally.

Fig. 5 illustrates the significance (σw) of each of the input variables, as perceived by the

neural network, in influencing the toughness of the weld. The process clearly has a large

intrinsic effect, which complies with experience in that submerged arc welds are in general

of a lower quality than manual metal arc welds. Note that this is a process effect which is
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independent of all the other variables listed. The yield strength has a large effect and that

is well established [1]. It is also widely believed, as seen in Fig. 5, that acicular ferrite has a

large effect on the toughness. Nitrogen has a large effect, as is well established experimentally

[10,17–12]. Oxygen influences welds in both beneficial and harmful ways, e.g. by helping the

nucleation of acicular ferrite or contributing to fracture by nucleating oxides.

It is surprising at first sight that carbon has such a small effect, but what the results really

demonstrate is that the influence of carbon comes in via the strength and microstructure.

Phosphorus and sulphur have only a small effect; the toughness measured was in the as–

welded condition whereas many of the classical embrittlement effects manifest themselves in

the stress–relieved condition. It is also possible that the effects of P and S are higher at

strength levels larger than encountered here. All of the welding consumables are commercially

used so that they are not expected to be embrittlement prone. Elements such as Mn and Si

do not feature greatly presumably because their effect comes in via microstructure. Fig. 5

also shows a relatively small effect of temperature on toughness, but it should be noted that

the temperature range considered is only 80 ◦C (Table 1), and that a part of the effect of

temperature is to alter the yield strength, which is identified by the model to be one of the

important variables.

Fig. 5: Bar chart showing a measure of the model–perceived significance of

each of the input variables in influencing toughness.

The model can be used to estimate the toughness if all of the inputs listed in Table 1
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are available. The amount of work required to accumulate these inputs is not trivial, but

the situation can be ameliorated. A physical model [11,12,16] based on phase transformation

theory can be used to predict the values of all the inputs from a knowledge of just the chemical

composition and a choice of welding conditions. This was done particularly to examine the

effects of carbon and manganese on weld toughness, given that a lot of work on these lines has

already been reported in the literature.

Fig. 6a shows data generated using the neural network but with all the inputs other than

manganese calculated using our weld model [11,12,16]. In all cases, the calculated inputs are for

manual metal arc welds with 180 A, 34 V, a welding speed of 0.004 m s−1, interpass temperature

200 ◦C, ISO2569 weld geometry. The manganese variations are for a basic composition

Fe − 0.07C − 0.5Si − Mn − 0.005S − 0.0025O − 0.0005N − 0.025Al

. It is interesting that the toughness at relatively high temperatures decreases as the man-

ganese concentration is increased. This upper shelf region involves ductile failure, and an

increase in strength leads to a reduction in the ductile fracture energy. The calculated yield

strength [10,12,16] increases from 403–539 MPa as the Mn concentration is changed from 0.5-

2.0 wt.%. However, the cleavage toughness at low temperatures clearly increases with Mn up

to a concentration of 1.5 wt.%. This is because the calculated [10,12,16] acicular ferrite content

increases from 35-67% when Mn is changed over the range illustrated. The low temperature

toughness for 2 wt.% Mn is nevertheless lower than that for the 1.5 wt.% alloy presumably

because the increased acicular ferrite content is not sufficient to compensate for the increased

strength. Indeed, an optimum manganese concentration of about 1.5 wt.% has been reported

to achieve the best toughness in manual metal arc welds of the type discussed here [22,23].

Fig. 6b shows similar data for carbon (the only difference being that the Mn concentration

is fixed at 1 wt.%.). The explanation is identical to that for the Mn data.

For welds similar to the carbon series, but with the carbon concentration fixed at 0.07

wt.%, the oxygen concentration alone was varied to a range well outside of the training dataset.

These results are presented in Fig. 7 along with the ±1 standard deviation predicted error bars.

It is clear that any attempt to extrapolate beyond the dataset on which the model is based

gives predictions which are not terribly useful. The fact that the toughness increases with

oxygen at low concentrations is strange since the acicular ferrite content (and indeed all the

other inputs) are kept constant. An increase in the oxygen content alone should lead to a

deterioration in toughness because of the tendency for non–metallic oxide particles to initiate

fracture.
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Fig. 6: (a) Variation in the normalised toughness as a function of the man-

ganese concentration. (b) Variation in the normalised toughness as a function

of the carbon concentration.

Finally, it is possible using the model to examine effects which cannot easily be produced

experimentally. It has frequently been argued that acicular ferrite is a better microstructure

than Widmanstätten ferrite, because the former with its less organised arrangement of ferrite

plates has a greater capacity to deflect cracks. This was tested for a manual metal arc weld

containing 0.07 wt.% carbon but of otherwise identical composition to the carbon series of welds

(Fig. 6). The allotriomorphic ferrite fraction was set to zero and all inputs except acicular ferrite

and Widmanstätten ferrite were varied in a complementary fashion. The results (Fig. 8) are

exciting – they demonstrate that increased acicular ferrite leads to an improvement of cleavage

12



233 K

300280260240220200
-0.6

-0.4

-0.2

0.0

30 % Acicular

50 % Acicular
70 % Acicular

90 % Acicular

Temperature / K

C
a

lc
u

la
te

d
 

N
o

rm
a

li
s

e
d

  
 C

h
a

rp
y

 T
o

u
g

h
n

e
s

s

Fig. 7: Variation in the normalised toughness as a function of the oxygen

concentration. Oxygen is varied here without changing any of the other inputs.

The oxygen concentration in the training data was in the range 234–821 p.p.m.

toughness but not of the upper shelf energy – the latter is not expected to change since the

strengths of acicular and Widmanstätten ferrite are virtually identical [24].

Fig. 8: Variation in the normalised toughness as a function of the acicular

ferrite/Widmanstätten ferrite content, everything else being kept constant.

CONCLUSIONS

An artifical neural network has been used to rationalise Charpy impact toughness data on
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manual metal arc and submerged arc steel weld deposits. The analysis is empirical but after

appropriate training, is found to reliably reproduce known metallurgical experience.

The method is useful in that the optimised network summarises knowledge in a quantita-

tive manner and can be retrained as new data become available.
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APPENDIX

Table 3 contains the values for the weights obtained after completing the training of the

network. These data can be used in combination with Table 1 and equations 1–3 in order to

use the network to make predictions of weld metal toughness.



   

Description Abbreviation weight

Bias to hidden unit 1 θ(1)
1 -0.139995

Bias to hidden unit 2 θ(1)
2 -0.248802

Bias to hidden unit 3 θ(1)
3 0.589258

Bias to hidden unit 4 θ(1)
4 -0.080140

Bias to output unit θ(2) -1.40271

Process to hidden unit 1 w(1)
1,1 -0.953784

Process to hidden unit 2 w(1)
2,1 0.455700

Process to hidden unit 3 w(1)
3,1 0.010017

Process to hidden unit 4 w(1)
4,1 0.355382

Yield strength to hidden unit 1 w(1)
1,2 0.599265

Yield strength to hidden unit 2 w(1)
2,2 -0.396398

Yield strength to hidden unit 3 w(1)
3,2 -0.195261

Yield strength to hidden unit 4 w(1)
4,2 -0.051569

Carbon to hidden unit 1 w(1)
1,3 0.003035

Carbon to hidden unit 2 w(1)
2,3 0.000652

Carbon to hidden unit 3 w(1)
3,3 0.002913

Carbon to hidden unit 4 w(1)
4,3 0.004131

Silicon to hidden unit 1 w(1)
1,4 -0.052339

Silicon to hidden unit 2 w(1)
2,4 0.069965

Silicon to hidden unit 3 w(1)
3,4 -0.088386

Silicon to hidden unit 4 w(1)
4,4 0.039075

Manganese to hidden unit 1 w(1)
1,5 -0.009951

Manganese to hidden unit 2 w(1)
2,5 -0.006226

Manganese to hidden unit 3 w(1)
3,5 -0.010586

Manganese to hidden unit 4 w(1)
4,5 -0.008486

Phosphorus to hidden unit 1 w(1)
1,6 -0.108883

Phosphorus to hidden unit 2 w(1)
2,6 0.070553

Phosphorus to hidden unit 3 w(1)
3,6 0.029519

Phosphorus to hidden unit 4 w(1)
4,6 0.047509

Sulphur to hidden unit 1 w(1)
1,7 -0.004894

Sulphur to hidden unit 2 w(1)
2,7 -0.008146

Sulphur to hidden unit 3 w(1)
3,7 -0.006305

Sulphur to hidden unit 4 w(1)
4,7 -0.009485

Table 3a: The weights describing the trained network



   

Description Abbreviation weight

Aluminium to hidden unit 1 w(1)
1,8 0.003158

Aluminium to hidden unit 2 w(1)
2,8 0.004146

Aluminium to hidden unit 3 w(1)
3,8 0.001416

Aluminium to hidden unit 4 w(1)
4,8 0.005775

Nitrogen to hidden unit 1 w(1)
1,9 0.305801

Nitrogen to hidden unit 2 w(1)
2,9 0.123011

Nitrogen to hidden unit 3 w(1)
3,9 -0.533206

Nitrogen to hidden unit 4 w(1)
4,9 0.028576

Oxygen to hidden unit 1 w(1)
1,10 -0.008650

Oxygen to hidden unit 2 w(1)
2,10 0.051781

Oxygen to hidden unit 3 w(1)
3,10 0.333115

Oxygen to hidden unit 4 w(1)
4,10 -0.204586

Primary Mic. to hidden unit 1 w(1)
1,11 0.012150

Primary Mic. to hidden unit 2 w(1)
2,11 -0.020293

Primary Mic. to hidden unit 3 w(1)
3,11 -0.044580

Primary Mic. to hidden unit 4 w(1)
4,11 -0.008752

Allotriomorphic to hidden unit 1 w(1)
1,12 0.025770

Allotriomorphic to hidden unit 2 w(1)
2,12 -0.018466

Allotriomorphic to hidden unit 3 w(1)
3,12 0.016131

Allotriomorphic to hidden unit 4 w(1)
4,12 0.028425

Acicular to hidden unit 1 w(1)
1,13 -0.074019

Acicular to hidden unit 2 w(1)
2,13 0.623779

Acicular to hidden unit 3 w(1)
3,13 0.655171

Acicular to hidden unit 4 w(1)
4,13 -0.748358

Temperature to hidden unit 1 w(1)
1,14 -0.077889

Temperature to hidden unit 2 w(1)
2,14 -0.077859

Temperature to hidden unit 3 w(1)
3,14 0.138927

Temperature to hidden unit 4 w(1)
4,14 0.084853

Hidden unit 1 to output unit w(2)
1 7.474170

Hidden unit 2 to output unit w(2)
2 6.714920

Hidden unit 3 to output unit w(2)
3 7.727480

Hidden unit 4 to output unit w(2)
4 8.835680

Table 3b: The weights describing the trained network


