Quenching and Partitioning: Science and Technology

by

John Speer,¹ David Matlock,¹ Emmanuel De Moor¹ and David Edmonds²

¹Colorado School of Mines and ²University of Leeds

July 23, 2013

Advanced Steel Processing and Products Research Center

Acknowlegements

INSPIRATION FROM GIANTS OF THE LITERATURE:

- TRIP (Olson, Cohen et al.)
- Bainite (Bhadeshia, Edmonds, Christian et al.)
- Martensite and Tempering (Krauss, Cohen *et al.*)
- Thermodynamics and Diffusion (Hillert, Aaronson, Ågren et al.)

COLLABOATORS AND STUDENTS:

- too numerous to mention !

A Little Background...

"Q&P" - A "New" Concept for Control of Retained Austenite

Thomas et al., 2008, 2011

"Interesting" Levels of Austenite Carbon Enrichment May be Possible

Speer et al., 2003

Process Design Methodology and "Ideal Quench Temperature"

Clarke, 2006. (0.19C-1.59Mn-1.63Si)

Key Assumptions for Simple Model

- "Ideal" partitioning

- Suppression of carbides
- Immobile α/γ interfaces
- No bainite formation

Clarke, 2006. (0.19C-1.59Mn-1.63Si)

Parallel Concepts Applied to "Medium-Mn" Steels

Predicted Partitioning Behavior (Medium-Mn Steel)

E. De Moor, et al., 2011.

Retained Austenite vs. Annealing Temp.

P. J. Gibbs, et al., 2011.

Relevance to AHSS Needs and Development Philosophy

Vehicle performance and weight reduction are driving steel research !

"3rd Generation" AHSS

- Anil K. Sachdev, General Motors, 2013

How do we get there ?

Matlock & Speer, 2006.

"A Moving Target"

US – DOE Targets (2012) are even greater (30%/1200MPa and 25%/1500MPa)

Specimen Geometry Effects

0.4

0.4

Distance, µm

Clarke, 2006.

Partitioning Kinetics and Quench Temperature ?

Clarke, 2006.

Application of Q&P...

B-pillar Reinforcement L/R Gauge: 2.0 mm

B-Pillar Inner Gauge: 1.2 mm

Side Member Front Floor LH Gauge: 1.8 mm

Door Panel Inner L/R Gauge: 1.0 mm

Photographs courtesy of L. Wang, Baosteel

Some Curiosities, Challenges and Opportunities

Structure/Property Relationships Not Fully Understood...

Partitioning Temperature Effects in AISI 9260

QT 150°C, PT 250°C

QT 190°C, PT 400°C

Retained Austenite

He, *et al.* 2006

Partitioning Temperature Effects in AISI 9260

QT 150°C, PT 250°C

QT 190°C, PT 400°C

Transition Carbides

Retained Austenite

He, et al. 2006

γ/α' Interface: Stationary or Mobile ?

~0.3C, 8Mn

Confirmation via EBSD Phase Maps

10 µm
Austenite
Ferrite

~0.3C, 14Ni

10 µm

~0.3C, 8Ni (c) Legend

G.A. Thomas, 2012.

Austenite Growth...

As-Quenched

Partitioned (400 °C, 60 s)

Thomas, et al., 2013.

Time/Temperature "Equivalence"...

Annealed (conventional) Q&P

Summary

Q&P science and technology continue to advance.

Challenges & opportunities remain in both domains !

820°C-180s IAT, QT=200°C, PT/t=400°C-10s

Feng, 2010

6µm