

Regeneration treatment on welding of nanostructured bainite K Fang, KJ Song, JG Yang, XS Liu, HY Fang, HKDH Bhadeshia

fangkunhit@163.com

State Key Laboratory of Advanced Welding & Joining Harbin Institute of Technology, China

Outline

- What's nanostructured bainite ?
- What are the welding problems ?
- Previous welding method
- New method—regeneration technique

H.K.D.H. Bhadeshia, Proc. R. Soc. 466 (2010) 3–18.

Rolls-Royce

Titanium
Nickel

Steel
 Aluminium
 Composites

What are the welding problems ?

Steel	С	Si	Mn	Cr	Mo	V	Co	Al
А	0.79	1.59	1.94	1.33	0.30	0.11	-	-
В	0.98	1.46	1.89	1.26	0.26	0.09	-	-
С	0.83	1.57	1.98	1.02	0.24	-	1.54	-
D	0.78	1.49	1.95	0.97	0.24	-	1.60	0.99

Brittle martensite

Previous welding method

Post Weld Rapid Heat Treatment (PWRHT)

Regeneration treatment

Chemical compositions of alloys investigated in the present work (wt%) С Si Mn Ρ Cr Мо Ni Ν Cu Sn AI Co V 0.82 1.66 2.05 0.009 0.22 0.36 1.06 0.002 0.04 0.003 0.051 0.003 0.002 111 a Thermocouple 40mm×60mm×2mm 110 ¥ Thermocouple 200 nm 250°C, Thermocouple 5days

AWJ Regeneration treatment

Differences of microstructure

Fig.2 Magnified views of (a) the weld (b) base metal.

The alloying elements compositions of each zone in the weld (wt%)

	Si	Cr	Mn	Мо	Ni
zone I	1.97	0.37	2.09	0.56	0.85
zone II	2.14	0.28	2.14	0.78	0.82
zone III	3.45	0.54	3.91	2.10	0.90

AWJ Regeneration treatment

Differences of microstructure

VyC/ VyTotal=40%

Effect of regeneration temperature

 $x_{\gamma}/x_{\alpha} = oa/ob$ $x_{\gamma} = oa/ab$

 $T\uparrow, X_{v}\uparrow$

The phase diagraph of bainite and austenite

Effect of regeneration temperature

Regeneration Temperature	250 °C	230 °C
Austenite Fraction	0.214	0.199
Lattice Parameter / Å	3.614	3.623
UTS/MPa	1950	2020
ε _τ /%	5.28	1.06

Effect of regeneration time

6h

120h

Effect of regeneration time

Effect of welding heat input on microstructure in tempered zone

Effect of welding heat input on microstructure in tempered zone

Original

Low heat input

High heat input

Effect of welding heat input on microstructure in tempered zone

Low heat input

High heat input

Regeneration treatment

Effect of welding heat input on microstructure in tempered zone

	Welding speed/mmmin ⁻¹	power/kJcm ⁻¹	Tensile strength/MPa	Rase meta	
TIG	185	9.1	1680	1077MDe	
LBW	1000	0.6	1844		

1 Very long regeneration time

2 Hot cracks

3 Isothermal treatment for huge structure

Conclusion

- 1 There are three problems for the welding of strong bainite : (a) brittle martensite formation in both the fusion zone and the heat-affected zone in its close proximity;
 (b) the formation of cementite in the heat-affected zone further away from the weld, and (c) cold cracking in the weld itself.
- 2 Regenration technique has been designed to weld the strong bainite. A similar bainite structure to the original base metal has been obtained in the fusion and austenitised zones. The mechanical properties of the fusion and reaustenitised regions are promising.

Conclusion

 3 The reasons for mechanical properties decreasing are carbide precipitation, dislocation recovery and austenite decomposing during rapid tempering and regeneration. By reducing welding heat input using LBW, mechanical properties decreasing has been successfully avoided by comparison with the original base metal.

fangkunhit@163.com