Boron: Type IV Cracking

<u>Fujio Abe</u>, M. Tabuchi, S. Tsukamoto and Y. Liu

National Institute for Materials Science (NIMS)

ABE.Fujio@nims.go.jp

- **1. Background and objectives**
- 2. Microstructure and creep strength of heat-affected-zone (HAZ) of welded joint
- 3. Suppression of Type IV cracking by boron
- 4. Alloy design of 9Cr steel with high creep strength and no Type IV cracking at 650 °C
- 5. Summary

Higher steam temperature is strongly desired

Coal-fired power plants in Japan

Conventional 9% Cr steel (Gr.92) shows significant degradation in welded joints

to make clear mechanisms for lower creep strength of HAZ than base metal *Fine grains?*

• to make clear boron effect on suppression of Type IV cracking in HAZ

to establish alloy-design of 9Cr steel with high strength and no Type IV cracking

Simulated heat-affected-zone (HAZ) specimens

Same grain size, Different amount of GB M₂₃C₆ carbides

Gr.92:9Cr-0.5Mo-1.8W-0.2V-0.05Nb

Grain refinement is not a main reason for degradation

Gr.92 after A_{C3} thermal cycle

Gr.92NN after A_{C3} thermal cycle

Microstructure after A_{C3} thermal cycle Gr.92 Gr.92NN normalizing normalizing \rightarrow tempering → sub-zero in liq. N \rightarrow A_{C3} thermal cycle \rightarrow A_{C3} thermal cycle PAGB PAGB of HAZ <u>1µm</u> 1µm 3.06V 10.5mm x20.0k SE(M 3.0kV 10.2mm x20.0k SE(M)

Poor M₂₃C₆ along GB and Sub-GB

Enough M₂₃C₆ along GB and LB

LB : lath boundary

9Cr-90ppm boron steel

No degradation even after A_{C3} thermal cycle

9Cr-3W-3Co-0.2V-0.05Nb

9Cr-90ppm B after A_{C3} thermal cycle

Enough M₂₃C₆ carbides along PAGBs and block boundaries

Near PAGBs

Inside grain

9Cr-90ppm B after A_{C3} thermal cycle

Precipitation of Fe_7W_6 -\mu phase at GBs of fine grains

Gr.92 after A_{C3} thermal cycle Fine-grains & poor M₂₃C₆ along GBs

A_{C3} - HAZ of 9Cr-boron steel

Specimen surface (130 ppm B)

Just above A_{C3}

Segregation of boron at G.B. $C_{GB} = C_0 \exp(B/RT)$ δ B = 62.7 kJ / mol (316 ss)d L. Karlsson et al. (1988) A_{C3} 10⁶ Concentration of boron (ppm) Concentration of boron (%) **Grain boundary** 10⁵ Creep test Temp. Tempering 10⁴ Temp. **Normalizing** δ = 0.3 nm С_{GВ} ′ $\mathbf{C}_{\mathbf{GB}}$ Concentration of boron Temp. 10³ d = 50 μm Ci = 100 ppm **Inside grain** 10² C, 10¹ C₀ 600 800 1000 1200 G.B. G.B. Distance Temperature (°C)

NIMS 9Cr steel: MARBN

MARBN : **MAR**tensitic 9Cr steel strengthened by **B**oron and MX **N**itrides

120 - 150 ppm boron & 60 - 90 ppm nitrogen

Production of thick-walled MARBN pipe

MARBN (9Cr-2.8W-3Co-0.2V-0.05Nb-0.08C-0.008N-0.014B)

Summary

(1) The degradation of creep strength in HAZ is not caused by grain refinement but reduction of boundary hardening is the most important.

(2) Soluble boron produces substantially same microstructure in HAZ as base metal, which suppresses Type IV cracking.

(3) NIMS 9Cr steel (MARBN) exhibits high creep strength and no Type IV cracking at 650 °C.

Boron reduces coarsening rate of M₂₃C₆

Coarsening of carbide particle in solid matrix requires accommodation of local volume change.

If boron atoms occupy vacancies, local volume change cannot be accommodated.

Gr.92NN after A_{C3} thermal cycle Fine-grains & enough M₂₃C₆ along GBs

