

Reliable ab initio methods

Tony Paxton 24th July 2013

NPL Management Ltd - Public

Outline

- Density functional theory and tight binding
- Pure iron
- Carbon in iron
- Hydrogen in iron

Foerst et al., Phys. Rev. Lett., 96, 175501 (2006)

Tight binding models

× /	× *	1	N 2	0 17					 4 		
		d-sc	<i>d</i> -fx	sd-sc			sd-fx 192 45 100 6		Target 168 53 122 15		
K (Gpa) C' (GPa) c_{44} (Gpa) $\Delta E_{hep-bec}$ (mRy)	(mRy)		174 50 117 6		185 55 106 6						(Expt.) (Expt.) (Expt.) (LSDA-GGA)
$H_{\text{Vac.}}^{\text{F}}$ (eV)		2.0			1.6				1.61–1. 2.0	75	(Expt.) (LSDA-GGA)
H ^M _{Vac.} (eV)		1.16			0.81				1.12–1. 0.65–0.	34 75	(Expt.) (LSDA-GGA)
				а	b	с	b/a	c/a	V/V _{exp}		
		θ-Fe ₃ C	TB LSDA-GGA Expt.	4.95 5.13 5.09	5 6.79 8 6.65 9 6.74	4.42 4.46 4.52	1.37 1.30 1.32	0.89 0.86 0.89	0.96 0.98		
		€-Fe ₃ C	TB LSDA-GGA Expt.	4.63 4.74 4.77	3 4 7	8.64 8.63 8.71		1.87 1.82 1.83	0.93 0.98		
	$H_{\rm C}^{\rm M}$	αE_{E}	$E_B(2k)$:)	$H_{\rm C}^{\rm M_{\gamma}}$ (tet	t)	$H_{\rm C}^{\rm M_{\gamma}}({\rm d})$				
LSDA-GGA TB	0.8 0.8	7 0. 1 0.	47 1.50 35 1.55		1.48 2.11		1.00 0.63				

Iron carbides

Carbon diffusion in austenite

Carbon diffusion in ferrite

P.P.D. =
$$\rho(x, x, T)/Z$$
 $F = -kT \log Z$
$$Z = \sum_{i} e^{-E_i/kT} = \int dx \,\rho(x, x, T)$$

$$\approx \left(\frac{mNkT}{2\pi\hbar^2}\right)^{N/2} \int \mathrm{d}x_1 \dots \mathrm{d}x_N$$

3 7 1 -

$$\times \exp\left(-\sum_{s=1}^{N} \left[N \, kT \frac{m}{2\hbar^2} \left(x_{s+1} - x_s\right)^2 + \frac{1}{kT} \frac{V(x_s)}{N}\right]\right)$$

Exact in the limit $N \to \infty$

$$Z = \int \mathcal{D}x(u) e^{-S/\hbar}$$
$$S[x(u)] = \int_0^{\beta\hbar} du \left[\frac{1}{2}m\dot{x}^2(u) + V(x(u))\right]$$

$$\rho_c(q_c, \mathbf{r}_c) = \int \mathcal{D}q(u) \mathcal{D}\mathbf{r}(u) \delta(q_c - q_0) \delta(\mathbf{r}_c - \mathbf{r}_0) \exp\{-S[q(u), \mathbf{r}(u)]/\hbar\}$$
$$Z_c(q_c) = \int d\mathbf{r}_c \,\rho(q_c, \mathbf{r}_c)$$
$$\kappa^{\text{QTST}} = \frac{\bar{v}}{2} \frac{Z_c(q^*)}{Z_c(q_R)}$$
$$\bar{v}_{FP} = \left(\frac{2}{\pi m\beta}\right)^{\frac{1}{2}}$$

Conclusions

- Tight binding can be nearly as reliable as density functional theory
- We now have models for C and H in Fe
 Paxton and Elsässer, *Phys. Rev. B*, **82**, 235125 (2010); *ibid*, **87**, 224110 (2013)
- We have a fully quantum mechanical prediction of the diffusivity of H in ferrite