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Background

O The need to reduce CO, emissions coupled with the need to increase the quantity of
electricity supplied are driving to the development of new power generation systems.

O Significant gains in efficiency for power generation systems can be made by increasing
the steam temperatures and pressures. This lead to an improvement of the high-
temperature properties of current heat resistant alloys.

O The low creep resistance at high temperatures of Fe-base alloys could be mainly
improved by different methods:

(d One method consists on a combination of composition adjustments, guided by
computational thermodynamics, and thermo-mechanical control process (TMCP)
optimization.

[ Second method is to strength the steel by oxide dispersion, and this line led to
work on ferritic oxide dispersion-strengthened (ODS) alloys. The advantages of
ODS alloys at high temperatures are clear: high strength and high creep
resistance.

[ Third method consists on compositional tunning to induce the formation of
nanoclusters and nanophases. An example is illustrated here.
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o Topics included in this presentation and its effect on phase separation:
= Activation energy of a - o’ phase separation
= Novel nanophase formation of ' (Fe-Ti-Al precipitate)
= Effect of elastic stress on a - o' + B’ precipitation



Material

PM 2000 is a commercial Fe-base ODS alloy manufactured by PLANSEE in
Lechbruck, Germany

Chemical composition of PM 2000
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wt. % 18.6 5.5 0.04 0.09 0.006 0.54 0.39
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Microstructure

Anisotropic microstructure: Strongly textured (<110>| |RD) elongated
grains with high-dislocation density and homogenous distribution of
particles




Microstructure
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Hardening
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Annealing at temperatures below 500 °C induce hardening. Surprising
increase at 435 °C is observed.



APT Results

2040 h 475 °C

Red 30% Cr isoconcentration surface revealing the
distribution and spherical morphology of Cr-rich o’ phase.

Green 5% Ti isoconcentration surface revealing the existance
of 3.2 nm in diameter nanoclusters of Fe(Ti,Al) (B’ phase)

100 h 475°C

C. Capdevila, M.K. Miller, K.F. Russel, J. Chao, J.L. Gonzdlez-Carrasco, Mater. Sci. Eng. A (2008) 490 277-288.




100 h

1000 h

3600 h

Nanoparticles at 435 °C
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O 4-nm-thick atom maps for selected
times (volume of 4x20x40 nm3)

O The Cr-enriched o' regions were
found to be depleted in Al

O The phase separation is of a finer
scale and is less well developed at
lower ageing temperatures

O The atom maps also reveal the
presence of a Ti- and Al-enriched
phase (B'). This phase is present at
a significantly lower number
density compared to the Cr-
enriched o’ phase, but its number
density increases at lower ageing
temperatures
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o'-phase composition

Proximity histograms analysis
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475 °C

435 °C

400 °C

o’'-phase morphology

500 h 3600 h

observed at 475°C are clearly
isolated and do not form a
percolated microstructure

; Q | ab & O The spheroidal o particles
| A ‘ ‘

O At the lower ageing
temperatures the morphology
of the Cr-enriched o’ phase
after 3600 h is of a finer scale
and forms an interconnected
network




o’-phase kinetics

90

475 °C
80 A y = 9.127x0-2638
R? = 0.9662
70 - ‘o .
L
,/ <& i

60 A ~t1/3 5 S / a3s5°C
o S/ y=32624x03
% 90 1 / /" R®=0.9626
© p /
~ /
($40 - 4 P
3 /

yd se;
30 A //@ ,Q” u
s 400 °C
20 A §// § By = 2.2646x0:2831
R? = 0.8831
10 A
O T T T T
1 10 100 1000 10000 100000
Time/h

The kinetics of o - 0" phase separation process were
determined from the analysis of proximity histogram



o’-phase kinetics
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The size of the o increases with a time exponent of ~0.3 which is
consistent with the mean precipitate size R(t) varying as ~t1/3
predicted by the LSW theory.



Activation energy for a’-phase
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Since volume fraction of 8’ is significantly lower than o/, the
influence of ' on TEP is negligible.
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Activation energy for a’-phase

Fitting TEP (AS) to Austin-Rickett equation:
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Novel p’'-phase: Composition
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Nature of [3 phase
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Nature of B'-phase

(FFT)
Solid-solution type:
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Coherency with matrix: (011) of Fe (0.203 nm) coincide with
the planes (022) of the particle (0.208 nm)



Effect of elastic stress
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a’-phase precipitation is insensitive and [’-phase is very
sensitive to elastic stresses



Effect of elastic stress

g’ precipitation
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Elastic stresses induce coarsen 3’ particles but no significant change in

number density



Effect of elastic stress

Grain boundary segregation
GB B’ particle
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Elastic stresses induce GB segregation of Cr, Al and mainly Ti



Effect of elastic stress

LAGB

(High-Angle Grain Boundary) (Low-Angle Grain Boundary)
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STEM energy-dispersive X-ray spectroscopy (EDS) mapping
435 °C /2000 h / 320 MPa




Effect of elastic stress

Cr
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Conclusions

Hardening of FeCrAlTi alloy by both dispersion of nanometer in size oxides and
precipitation of nanophases is studied. The following conclusions arise:

1.

Proximity histograms analysis revealed that the faster phase separation kinetics
without stress applied is 475 °C. The activation energy for a - o’ phase separation
is 242 kJ mol1, which is similar than Cr-self diffusion in Fe.

Al is rejected from the o’ to the matrix during the phase separation. A
simultaneous precipitation of Fe-Ti-Al intermetallics: B’ phase Fe,(AlTi, ;Cr,,) is
found.

The maximum separation method estimated the size and number density of B’
particles. The B’ particles are more abundant and finer at 435 °C than that at 475
°C, which lead to an extra hardening.

Elastic stress does not affect a - o’ phase separation kinetics, but significant
coarsening in B’ phase is observed.

It was observed Ti and Al segregation at the grain boundary (HAGB and LAGB)
during elastic stressed ageing treatments.



