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Current state-of-the-art
(electromagnetic, EM, sensors)

Commercial systems (e.g. IMPOC, HACOM) for use in strip mills with
correlations between signal output and mechanical properties.

Laboratory systems and numerous empirical relationships for
properties or microstructure changes (valid for specific steels).

IMPOC system for cold rolled strip product for tensile strength prediction



Requirements

To develop the technology there is a need for more physical models
to move away from empirical relationships.
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Motivation and Challenges

e On-line inspection of steel microstructure in harsh environments
(e.g. steel processing mills) using electromagnetic (EM) sensors.

* In-situ inspection of microstructure for in-service components (e.g.
power plant components).

e Complex microstructures and fundamental relationships.

http://www.metal-supply.com http://www.trinityndt.com



Phase transformation monitoring

Austenite is paramagnetic and ferrite / pearlite / bainite / martensite
are ferromagnetic (below the Curie temperature, = 770°C).

Phase transformation can be clearly observed during controlled

cooling experiments.
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Phase transformation monitoring

Sensors designed to operate at large (10’s mm) lift off and sensor
values have been predicted based on transforming microstructure.

Exciting coil
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EM sensor system

EM model for a given microstructure
(magnetic field intensity shown - paramagnetic
phase appears blue, magnetic lines of flux shown)

Model of EM sensor and target steel



Practical application of EM technology
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Output from practical application
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Output from practical application

Maps of the progression of transformation for a hot rolled plate held
over a sensor array as it cooled (pilot plant mill).
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Summary

e On-line systems for phase transformation monitoring are

currently being trialed.

e Relationship between
sensor signal and phase
fraction can be modelled,
including taking into account
phase distribution.

e Future need is for sensor
systems for more complex
microstructures which
requires better fundamental
understanding and alternate
measurement parameters.
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Scientific principles - BH curve

Remanence, Br — a measure of the
remaining magnetisation after the
driving field is removed

Saturation
Magnetisation curve B :: ::
consists of very small - a=d
jumps due to sudden @
domain wall movement K . i :
producing noise o ‘ Applying an
(Magnetic Barkhausen e, @ alternating low field
noise) samples the initial

permeability, p..

Coercivity, Hc — magnetic field
required to reduce magnetisation
to zero after saturation
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Scientific principles — domain movements

Ferromagnetic

material
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Boller, C., et al., Materialwissenschaft und Werkstofftechnik, 2011. 42(4): p. 269-278.



Domain observations in steels

Magnetic domain observations in ferritic steels using ferro-fluid



Relationship between domains and
microstructure in steels

One domain packet is observed per ferrite grain ...
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Relationship between domains and
microstructure in steels

One domain packet is observed per ferrite grain ... except at large
ferrite grain sizes where multiple domain packets are seen.

Size approx 2




Relationship between domains and
microstructure in steels

Materials property of relative
permeability is related to the
ferrite grain size (in the absence
of other microstructural
changes) in the regime where
each ferrite grain contains one
domain packet.

Relationships with other
individual microstructural
parameters are reported and
under development.

215
210

Z 205

S 200

v

§_ 195

S 190

'§ 185

-

& 180
175
170

0.05

0.1

0.15
1/d"0.5

0.2

0.25

0.3



Dynamic observation of domain walls

Application of a magnetic field with in-situ observation using a
high speed camera.

The magnetic flux density on the sample is approximately 4.9 -
17.6 mT for an operating current of 2~7A

magnetic field
sample /
! p

Magnetic field with respect to sample

_-IL Power pack

Experimental arrangement



Dynamic observation of domain walls

Dynamic observations have allowed the relative strength of the
pinning points in the domain walls to be observed.
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Effective pinning points in power generation steels

For domain wall motion under low applied field (related to the material’s
relative permeability, p,) there is a relationship between the spacing
between the pinning points (lath boundaries and / or precipitates) and p..
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Case study for P91 steels

G8 sample

AIN absent;

M,,C, on lath
boundaries

High density of MX
within laths — reducing

mean free path to
domain wall motion

G11 sample

AIN coarse and widely
separated —

insignificant pinning.

Many fewer MX — less
pinning
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Courtesy of EPRI.
L.Cipolla, Centro Sviluppo Materiali, Italy, June 2010 (internal presentation)




Low-frequency imaginary magnetic flux, Wt

EM testing of P91 steels
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Low-frequency imaginary magnetic flux, Wt

EM testing of P91 steels
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Low-frequency imaginary magnetic flux, Wt

EM testing of P91 steels

Larson-Miller parameter
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FUTURE - exploitation of magnetic information

Microstructures are complex, therefore a single magnetic property
output is insufficient. Analysis of the minor loops on a BH curve
should allow much more detailed microstructural characterisation.
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Conclusions

e Sensor systems exist for on-line and off-line materials
characterisation. However, most systems rely on (semi-)
empirical relationships to give a mechanical property or
microstructural feature for certain steels.

 Fundamental relationships between specific microstructural
features and magnetic measurements exist.

* Using measurements of multiple magnetic parameters using

new deployable sensors will allow the characterisation of
complex microstructures in the future.

How far can sensors go in replacing metallography and
mechanical testing in the future?



