Pop-in Behavior during Nanoindentation on Steel Alloys

Prof. H. N. Han Seoul National University (hnhan@snu.ac.kr) 2013.7.24, APMS

Acknowledgements:

Basic Science Research Program through NRF funded by the Ministry of Science, ICT and Future Planning (2013008806) and POSCO (2013Z029)

Dr. Tae-Hong Ahn,	Korea Atomic Energy Research Institute
Dr. Tae-Ho Lee,	Korea Institute of Materials Science (KIMS)
Dr. Easo P. George,	Oak Ridge National Laboratory, USA
Dr. Hongbin Bei,	Oak Ridge National Laboratory, USA
Prof. Kyu Hwan Oh	Seoul National University (SNU)
Prof. Kyung-Tae Park,	Hanbat National University
Dr. Kyooyoung Lee	POSCO
Mr. Yanghoo Kim	Seoul National University (SNU)

Micromechanical Material Testing

Nanoindentation

"Nanoindentation video" on YouTube

Simple to measure quantitative mechanical properties (hardness, elastic modulus)

Indentation Size Effect (ISE)

Rodriguez and Gutierrez ; Materials Science and Engineering A (2003)

Probability Effect on Nano-indentation

Schematic diagram showing the probability effect by the geometry of the nanoindentation test with spherical indenters.

S. Shim et.al Scripta Materialia (2008)

Nanoindentation Pop-in

Nanoindentation Pop-in

H. Bei et al., Phys. Rev. Lett. (2005)

Pop-in occurs as plastic deformation initiates

*Rough surface, Strained, Large R ⇒ Less possibility of pop-in

From Dr. Fivel and Dr. Jang in INPG Grenoble

Other sources ?

Possible Sources of Pop-in in Steel

TRIP Steel (a')

Chemical composition

element	Fe	С	Mn	Si	AI
wt.%	bal.	0.08	7.0	0.5	1.0

Microstructure Phase map

Mechanically induced $\gamma \rightarrow \alpha'$ transformation

TRIP Steel (ε)

Chemical composition

С	Mn	Si	Ni	N	Cr
0.02	5.06	0.19	0.23	0.28	20.08

Microstructure

Mechanically induced $\gamma \rightarrow \varepsilon$ transformation

Ferritic Steel

Chemical composition

С	Mn	Si	AI	N	Cr
0.06	0.16	0.08	0.02	0.0006	0.01

Microstructure

Ferrite : 99% Pearlite : 1%

Sharp yield drop at yield point

 $\gamma \rightarrow \alpha'$ type TRIP steel

Material used

Chemical composition

element	С	Mn	Si	AI	Fe
wt.%	0.08	7.0	0.5	1.0	bal.

Volume fraction (%)				
BCC	BCC FCC unindexed			
(ferrite)	(austenite)	(boundaries)		
59.7	28.6	11.7		

Strain-induced $\gamma(fcc) \rightarrow \alpha'(bct)$ transformation occurs

Pop-in Analysis (Austenite)

The 1st pop-in is likely induced by dislocation nucleation

Pop-in Analysis (Austenite)

The 1st pop-in is likely induced by dislocation nucleation

TEM Analysis (Austenite)

TEM Analysis (Austenite)

Pop-in Analysis (Austenite)

Pop-in Analysis (Austenite)

24 K-S Variants

Variant	Plane parallel	Direction parallel	Variant	Plane Parallel	Direction Parallel
No.	(γ)//(α)	[γ]//[α]	No.	(γ)//(α)	[γ]//[α]
1	(111) // (011)	[-110] // [11-1]	13	(1-11) // (011)	[110] // [11-1]
2	(111) // (011)	[-110] // [-11-1]	14	(1-11) // (011)	[110] // [-11-1]
3	(111) // (011)	[01-1] // [-11-1]	15	(1-11) // (011)	[10-1] // [-11-1]
4	(111) // (011)	[01-1] // [11-1]	16	(1-11) // (011)	[10-1] // [11-1]
5	(111) // (011)	[10-1] // [11-1]	17	(1-11) // (011)	[0-1-1] // [11-1]
6	(111) // (011)	[10-1] // [-11-1]	18	(1-11) // (011)	[0-1-1] // [-11-1]
7	(-111) // (011)	[110] // [11-1]	19	(11-1) // (011)	[-10-1] // [11-1]
8	(-111) // (011)	[110] // [-11-1]	20	(11-1) // (011)	[-10-1] // [-11-1]
9	(-111) // (011)	[01-1] // [-11-1]	21	(11-1) // (011)	[011] // [-11-1]
10	(-111) // (011)	[01-1] // [11-1]	22	(11-1) // (011)	[011] // [11-1]
11	(-111) // (011)	[-10-1] // [11-1]	23	(11-1) // (011)	[1-10] // [11-1]
12	(-111) // (011)	[-10-1] // [-11-1]	24	(11-1) // (011)	[1-10] // [-11-1]

Evaluation of Pop-in

Lattice deformation tensor :
$$\mathbf{F}_b = \mathbf{B}_b \mathbf{P}_b$$

□ Bain deformation tensor (defined on BCC crystal coordinate) :

$$\eta_3 = \frac{c_{BCT}}{a_{FCC}}, \quad \eta_1 = \frac{\sqrt{2} a_{BCT}}{a_{FCC}}$$

 Lattice-invariant shear tensor (defined on invariant shear plane) :

 Transformation strain tensor (defined on BCC crystal coordinate) :

$$\mathbf{B}_{b} = \begin{bmatrix} \eta_{1} & 0 & 0 \\ 0 & \eta_{1} & 0 \\ 0 & 0 & \eta_{3} \end{bmatrix}$$
$$\mathbf{P}_{i} = \begin{bmatrix} 1 & g & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{\varepsilon}_{ij}^{C} = \frac{1}{2} [\mathbf{F}_{b}^{T} \mathbf{F}_{b} - \mathbf{I}]$$

Evaluation of Pop-in considering variant selection

: Transformation strain tensor of 24 variants (crystal coordinates of BCT)

: Transformation strain tensor (specimen coordinates)

interaction with external stress due to indentation

$$A^{i} = -\frac{0.011\alpha\delta r(f_{sb})^{r-1}(1-f_{sb})}{24\Delta S} (\Delta G + \widetilde{\sigma} \widetilde{\epsilon}_{S}^{i})$$

: nucleation rate of each variant

Pop-in Analysis

Pop-in Analysis (Austenite)

Pop-in Analysis (Austenite)

Change of stress condition results in different K-S variants

 $\gamma \rightarrow \varepsilon \rightarrow \alpha'$ type TRIP steel

Predominating deformation mode in the early stage : ε martensite formation

ε Martensite

Deformation Microstructure

Results

Results : Microstructure

Results : Microstructure

Lattice displacement by $\gamma \rightarrow \varepsilon$ transformation

✓ Displacement along indentation axis by one ε layer (1b_p)= 0.082(nm)

✓ Pop-in measured was 1.75nm~3.02nm (corresponds to 20b_p~37b_p)

Pop-in in Ferrite

Material

Ferritic Steel

<u>Chemistry</u>

element	wt.%
С	0.06
Mn	0.16
Si	0.08
AI	0.02
Ν	0.0006
Cr	0.01
Fe	bal.

C, N : interstitial

Microstructure (EBSD band contrast)

Ferrite : 99% Pearlite : 1%

Tensile Behaviors

analogous phenomenon must exist in the case of nanoindentation

- The origin of nanoindentation pop-in behavior in steel was investigated.
- Pop-in at elastic→plastic transition point (yielding) is likely the result of dislocation nucleation.
- Austenite pop-in during plastic deformation was a result of geometrical softening by $\gamma \rightarrow \alpha'$ phase transformation.
- The ε-martensite formation in the early stage of plastic deformation possibly have contributed to pop-in.
- Ferrite pop-in (nanoscale) was closely related to the sharp yield drop (macroscale).

Strain by $\varepsilon \rightarrow \alpha$ 'transformation

**α 'martensite was assumed to be BCC structure (c/a ratio was nearly 1 from TEM analysis)

