

The magnetic-field-induced precipitation behaviors of alloy carbides

T.P. Hou, Y. Li and K.M. Wu

Wuhan University of Science and Technology

E-mail: wukaiming@wust.edu.cn

Acknowledgements

Professor M. Enomoto, Ibaraki University, Japan, for providing alloy specimens State Ministry of Education (Grant No. NCET-05-0680)

Introduction

3-5 Т, 400-550 °С

Influence of magnetic field on phase transformation

Schematic diagram of the principle component in Tokamak in reduced activation steel

Nuclear fusion reactor Reece, R. J. 1988

Magnetic (12T) Heat Treatment of Alloys

Two alloys, three heat treatments

Magnetic Heat Treatment Equipment

Steel I : Fe-C-Mo, $\gamma \rightarrow \alpha$ at 530°C

High magnetic field promotes the precipitation of M₆C

Steel I : Fe-C-Mo, $\gamma \rightarrow \alpha$ at 530°C

0 Т			12 T	
Time	1000 s	3600 s	600 s	3600 s
Туре	M ₂ C, M ₃ C	M ₆ C	M ₆ C	M ₆ C

Magnetic field promotes the M₆C precipitation

Magnetic field has no influence on the morphology of M_6C

Steel I : Fe-C-Mo, $\gamma \rightarrow \alpha$ transformation

No visible influence on alloy carbide morphology

Steel I : Fe-C-Mo, $\gamma \rightarrow \alpha$ transformation

Temp.	0 T				12 T				
	Fe (w	v t.%)	Mo (wt.%)			Fe (wt.%)		Mo (wt.%)	
	Average	σ	Average	σ	Av	erage	σ	Average	σ
530°C	38.69	0.98	61.30	0.98	6	7.16	4.48	32.78	4.48
E.		85 M ₆ C				l- wi	ligher tl ithout th	nan the co ne magne	ontent tic field
N	A 16					0 T, F	'e (wt.%)		
1	The		38	8-45 (700°C	~900°	C)	Ref.	[Sato T, 1962	2]
	-A-		3	6.4-38.6 (7	27°C)		Ref.[U	hrenius B,19	975]
G	Sold replicas	8	58.15 (874°C) Ref. [Woodyatt LR,1		1979]				

EDS analysis

Magnetic field increases the Fe concentration in M₆C

Steel I: Fe-C-Mo, Tempered at 200 °C

0 T			12	2 T
Time	600 s	3600 s	600 s	3600 s
Carbide types	ε-Fe ₂ C η-Fe ₂ C	ε-Fe ₂ C η-Fe ₂ C	ε-Fe ₂ C η-Fe ₂ C	ε-Fe ₂ C η-Fe ₂ C χ-Fe₅C₂

High magnetic field promotes the precipitation of χ -Fe₅C₂

Steel I: Fe-C-Mo, Tempered at 530 °C

High magnetic field promotes the precipitation of M_6C

Steel I: Fe-C-Mo, Tempered at 530 °C

	0 T		12	2 T
Time	600 s	3600 s	600 s	3600 s
Туре	M ₂ C, M ₃ C	M ₂ C, M ₃ C	M ₂ C, M ₃ C, M ₆ C	M ₂ C, M ₃ C, M ₆ C

High magnetic field promotes the precipitation of M₆C

Steel I: Fe-C-Mo, Tempered at 530 °C

For M₆C, the Fe atom concentration increases

Steel I: Fe-C-Mo, Tempered at 700 °C

700°C, 3600 s

700°C, 3600 s

High magnetic field has no visible influence on alloy carbide precipitation during high temperature tempering

Steel II: 2.25Cr-Mo, Tempered at 550 °C

Tempered at 550°C for 600 and 3600 s

Without a magnetic field			With a 12-T magnetic field	
Time	600 s	3600 s	600 s	3600 s
Туре	M2C, M3C	M2C, M3C	M ₂ C, M ₃ C M ₇ C ₃ , M ₂₃ C ₆	M ₂ C, M ₃ C M ₇ C ₃ , M ₂₃ C ₆
Carbides	(Fe, Cr, Mo)2C (Fe, Cr, Mo)3C	(Fe, Cr, Mo)₂C (Fe, Cr, Mo)₃C	(Fe, Cr, Mo) ₂ C (Fe, Cr, Mo) ₃ C (Fe, Cr, Mo)7C ₃ (Fe, Cr, Mo) ₂₃ C ₆	(Fe, Cr, Mo) ₂ C (Fe, Cr, Mo) ₃ C (Fe, Cr, Mo) ₇ C ₃ (Fe, Cr, Mo) ₂₃ C ₆

High magnetic field promotes the precipitation of $M_{23}C_6$ and M_7C_3 carbides

Steel II: 2.25Cr-Mo, Tempered at 550 °C

Gold replicas

The increased Fe content in the $M_{23}C_6$ and M_7C_3 carbide

No visible influence on alloy carbide morphology

Steel II : 2.25Cr-Mo, Tempered at 200, 700 °C

	0	Т	12	2 T
Time	600 s	3600 s	600 s	3600 s
Туре	M ₂ C, M ₃ C, M ₇ C ₃	M ₂ C, M ₃ C, M ₇ C ₃	$M_{23}C_{6}$	$M_{23}C_{6}$

200°C: The magnetic field promotes the precipitation of $M_{23}C_6$

	0 T, 12 T
Time	600 s, 3600 s
Туре	M ₂ C, M ₃ C, M ₇ C ₃ , M ₂₃ C ₆

700°C: Alloy carbides are changed into paramagnetic state. High magnetic field has no visible influence on alloy carbide precipitation.

Discussion:

Discussion: Weiss molecular field theory

$$B = B_0 + \lambda M$$

 $M = NmB_j(\alpha(T))$

$$B_{j}(\alpha) = \left\{ \frac{2j+1}{2j} cth \frac{(2j+1)a_{j}}{2j} - \frac{1}{2j} cth(\frac{a_{j}}{2j}) \right\}$$
$$\alpha_{j} = \frac{n_{B}\mu_{B}B}{kT}$$
$$T_{c} = \frac{(j+1)Nn_{B}^{2}\mu_{B}^{2}\lambda}{3jk}$$

The theoretical calculation of the magnetization (M) with temperature (T)

Magnetic field promotes the M₆C precipitation

Magnetic field promotes the Fe₅C₂ Precipitation

The magnetic free energy change and the magnetic moments

The magnetic free energy change of χ -Fe₅C₂ is the most remarkable

Steel I: Fe-C-Mo, Tempered at 200°C

Magnetic field promotes the M₆C precipitation

The magnetic free energy change of (Fe,Mo)₆C is the most remarkable

Magnetic field increases the Fe concentration

The magnetic free energy change of Fe is increased remarkably

M-T curves of $M_{23}C_6$ and M_7C_3 , and their magnetic Gibbs free energy

The magnetization curve with the temperature

The magnetic free energy change

High magnetic field promotes the precipitation of $M_{23}C_6$ and M_7C_3

Steel II: 2.25Cr-Mo, Tempered at 550°C

Conclusions

- The effect of high magnetic field on alloy carbide precipitation behaviors:
- >The precipitation sequence of specific alloy carbide is changed
- >The content of substitutional solute atom of Fe is increased
- > No visible influence on alloy carbide morphology
- The above three aspects are attributed to the magnetic free
- energy change with the presence of high magnetic field.