Flash Microstructure

T. Lolla¹, B. Hanhold², D. Tung¹ G. Cola³ and S. S. Babu⁴

¹The Ohio State University, Columbus, OH, USA ²currently at Ford Motor Company, Detroit, MI, USA ³SFP Works LLC, Washington, MI, USA ⁴The University of Tennessee, Knoxville, TN, USA

Acknowledgements:

NSF I/UCRC Center for Integrative Materials Joining Science for Energy Applications; Dr. X. Yu (ORNL) and Dr. K. Hono, NIMS, Japan for APFIM Analyses

Traditional processes to achieve good combination of strength and toughness

Ref: ASM Handbook

New Strategy: Flash processing

What is flash microstructure?

- Small Prior Austenite Grain Size (<20 μm)
- Mixed Bainitic/Martensitic Microstructure
- Uniform Distribution of Carbides

Flash Microstructure Contains Fine Bainitic/Martensitic Packets

Is it bainite or martensite? What are these carbides?

Mixed Microstructure [Bainitic/Martensitic Laths with Alloy Cementite] is confirmed

 What is so unique about the flash processing that leads to such a microstructure?

<u>Mechanism</u>: Rapid heating, short hold-time, un-dissolved carbides, carbon inhomogeneity in austenite & rapid cooling cooling → mixed microstructure

How does flash microstructure affect properties?

Tensile Properties of Flash Microstructure

Previous research on re-austenitization kinetics → base line for design

- Initial Microstructure Effects (Ling, Reed and Owen, 1985)
- Isothermal Dissolution of cementite (Liu, 1991)
- Akbay, Reed and Atkinson (1995)
- K. D. Clarke et al (2010) during induction heating (300°C/s)
 - Austenitization in ferrite + pearlite & tempered martensite microstructures
- Miyamoto et al (2010) on isothermal dissolution of spherodized cementite

 Current Research: Calculation of M₃C Dissolution during continuous heating with and without Cr

DicTra® Simulation: Fe-C & Fe-Cr-C system

- Austenite was allowed to form at α/M_3C interfaces
- Grows into both cementite and ferrite
- Heating rate 1, 10 & 100°C/s

Simulations for α - γ -Fe₃C Heating Rate: 1°C/s

- Dissolution of cementite in α-ferrite followed by growth of austenite into ferrite
- Let us compare the same with higher heating rates.

Simulations for α - γ -Fe₃C Heating Rates: 10 & 100 °C/s

- Dissolution of cementite in α-ferrite and then growth of austenite into ferrite in all heating rates
- Austenite grows into both ferrite and cementite
- How does it compare with Fe-Cr-C system?

Calculations suggest sluggish dissolution of cementite that is enriched with Cr.

- Dissolution is sluggish even at 1°C/s.
- Carbon in austenite is expected to be lower than bulk value.

Interface Velocity Controlled by Cr-diffusion

0.0

0.2

0.4

0.8

1.0x10⁻⁶

0.6

Distance (m)

- Interface concentrations shift with temperature
- High-Cr Interface concentration at the cementite/austenite interface Cr-enriched austenite

Complex on-cooling transformations for austenite with carbon inhomogeneity

- Carbon-depleted austenite on rapid cooling can form mixed bainite and martensite.
- The Cr and C enriched austenite should transform to martensite! [T₀=730°C]

<u>Demonstration of concept</u>: Develop a competing armor steel using flash processing

- Goal: Design a flash processed steel and compare it with existing high hard steel
- Design Rules: (1) Spherodized steel; (2) Crenriched cementite; (3) Flash Thermal cycle

Material	Fe	С	Si	Mn	Ni	Cr	Мо	V	Cu	W	Ti
High Hard	Bal.	0.3	0.4	0.9	0.9	0.55	0.55	0.005	0.1	0.01	0.03
FP 4130 (wt%)	Bal.	0.3	0.2	0.5	0.015	0.88	0.17	0.005	0.03	0.003	0.008

Initial microstructure of 4130 steel contains spherodized carbides in a ferrite matrix.

 Let us see how this microstructure changes on flash processing:

Hardness

Mixed Martensitic and Bainitic microstructure was obtained.

Hardness

 Did we get good mechanical/ ballistic properties?

Flash Processed steels have high strength levels than that of high hard:

Hardness [HVN]

Irrespective of through thickness gradients, ballistic properties are good & better than existing armor steels.

 <u>Significance and Innovation</u>: Design initial macro- and micro-scale compositional/microstructure gradients before flash processing to engineer the properties

Armor Requirements : Lightweight, Performance, Operational Sustainability and Survivability

- FP steel has better ballistic protection per pound than currently available materials (steel, aluminum, and titanium)
- In order to fully <u>deploy flash</u> <u>processed steel</u>, <u>weldability must be</u> <u>addressed</u>

Figure 7. StrykShield situational awareness kit by Carapace Armor Technology made using ATI 500-MILTM high hardness armor steel.

Figure 6. Machined Component made from ATI 500-MIL™ high hardness armor steel.

Figure 8. Stryk5hield situational awareness kit by Carapace Armor.

Gas metal arc welding leads to softening & bullet penetration in the weld and HAZ

GMAW

 Can we minimize the softening to mimic flash process thermal cycle during welding?

Using laser welding, extent of softening and vulnerability during ballistic testing was reduced

 How did the crack propagation occur under ballistic testing?

FP steel laser weld provides unique crack propagation characteristics

- Banding in the initial flash processed microstructure is attributed as the reason for such failures
- Future Research: Designing such microstructure through control of initial microstructure before flash processing

Conclusions

- What did we find?
 - Mixed microstructure containing bainite, martensite and undissolved carbides
 - Good combination of strength, ductility, ballistic properties
 - Extent of softening can be reduced by laser welding
- What are the design rules?
 - Control of spherodized microstructure, macro and micro-scale compositional gradients before flash processing [Heating Rate, Hold Time, Quench Rate]
- What is the significance?
 - An alternative strategy for obtaining advanced high strength steels for wide range of applications