Superbainite – Laboratory Concept to Commercial Product

A.J.Rose*, F.Mohammed, A.W.F.Smith, P.A.Davies, R.D.Clarke

Tata Steel UK

* and rew.rose@tatasteel.com

Acknowledgements:

Thanks are due to Tata Steel Europe for permission to publish this paper

Definition

Superbainite is:

- A steel structure which can be developed under certain circumstances, having very high strength and hardness

- A grade of strip steel developed over the last few years, able to be treated to give this structure

Originally developed at Cambridge University in 1990s

Superbainite

- A. Isothermal transformation
- B. Si carbide suppression
- C. Hardenability requirement
- D. Slow cooling option

Superbainite structure

Carbide-free ferrite laths

Retained austenite with increased carbon level

Schematic

TEM

Properties

Superbainite has:

High carbon content

- + other alloying elements
- + very fine structure
- = high strength and hardness

Claims:

- ~ 2.2 GPa UTS '3D' structure
- \rightarrow suitable for armour plate

"Specialist Armour Steels: The MoD has a requirement for an onshore manufacturing capability." Lord Drayson, Defence Technology Strategy, 2006.

Development activities

 A pilot-scale cast was made on the Normanton Heavy Pilot Plant at TTC in conjunction with the MoD

- Large enough for processing through commercial mills
- Demonstrated that commercial scale production was feasible
- Experimental work at Tata Swinden Technology Centre
 - Effect of variations in composition
 - Characterisation of properties
- Modelling work within Tata R&D

Tata process route

Overall cost and feasibility

Process stage

Titan predictions - Temperature

Titan predictions – Roll Force

Commercial compositions

С	Si	Mn	Р	S	Cr	Мо
0.85 x	0.75 x	1.4 x	0.015 x	0.01 x	1.0 x	0.3 x

Maxima in all cases

Si - Carbide suppression

P - Promotes segregation – need to keep to minimum

Cr, Mo - Hardenability

Mo - Reduces deleterious effects of P

Microstructures – optical

As-hot rolled - pearlite

Heat treated - Superbainite

Microstructure – SEM

SEM Micrograph of Superbainite

Retained austenite

EBSD - orientation

Red : ferrite Green : austenite.

Segregation

Segregation bands in as-rolled Superbainite

TEM examination

Transmission electron micrographs Carbides in commercial casts

Tensile tests

Tensile plot from first superbainite cast

Charpy toughness

Effect of laser cutting

Heat Treatment

Forced air cooling

Salt bath treatment

Salt bath treatment

Heat treatment parameters

Effect of heat treatment time and temperature on hardness

Perforation

Perforation

- increases ballistic efficiency
 - deflects bullets
- reduces weight of armour
- acts as crack-stoppers

Ballistic testing

Monolithic

Both sheets 500 mm square

Conclusions

Superbainite:

Developed as an academic concept Investigated in a laboratory / pilot scale testing Put into commercial production Bainitic armour steels still under development

