Voids and 30000 atoms ~ Molecular dynamics (MD) simulations of ductile fracture ~

<u>S. Munetoh</u>, M. Aramaki and O. Furukimi Kyushu Univ.

Voids and 30000 atoms ~ Molecular dynamics (MD) simulations of ductile fracture ~

<u>S. Munetoh</u>, M. Aramaki and O. Furukimi Kyushu Univ.

Outline

Introduction

- Method of molecular-dynamics simulation
- Results & Discussion
 - Single crystal
 - Poly crystal
- Conclusions

Introduction

Ductile fracture

Molecular-dynamics simulation

a powerful tool for analyzing the crystallization processes in atomic scale.

For example, Growth process of silicon....

Method of molecular-dynamics simulation

Method of molecular-dynamics simulation

Single crystal including vacancies

Poly crystal (including grain boundary)

Single crystal of BCC Fe including vacancies

- MD cell : 100 x 100 x 100 Å³
- 85,738 atoms
- Periodic boundary conditions for X,Y and Z direction
- Finnis-Sinclair potential

Only unstable atoms were monitored...

Only unstable atoms

tangled dislocation

Single crystal of BCC Fe

- MD cell : 81 x 94 x 115 Å³
- 73,058 atoms
- Periodic boundary conditions for X,Y and Z direction
- Finnis-Sinclair potential

initial E = 0.07 0.08 0.12 0.18

In the experiment...

Fig. 9. Changes in upper shelf energy and DBTT as a function of grainsize.

S. Takaki et al. / Journal of Materials Processing Technology 117 (2001) 359-363

We have performed MD simulation of ductile fracture...

- In the case of single crystal, a void was generated from a position tangled with dislocations.
- In the case of poly crystal, a void was generated from grain boundary.