Advanced High Strength Steels

Advanced High Strength Steels

Low density high-Mn steels

Low density high-Mn steels

Simplex steels

SIMPLEX = Austenite in solid solution

Multiple strain hardening behavior dislocation substructure (DS) + deformation twinning (TWIP)

Simplex steels: Strain hardening mechanisms

Fe-Mn-Al-C phase diagram

Fe-Mn-Al-C phase diagram

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Source: K. Ishida et al., ISIJ Inter. 30 (1990) 680

к carbides in austenitic matrix

γ/κ interfaces

Analysis of k carbides by 3D-APT

Composition profiles of γ/κ interfaces

Partiotining behavior of γ/κ

Deformation mechanisms of Triplex steels

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany I. Gutierrez-Urrutia, D. Raabe, Scripta Mater. 68 (2013) 34314

Deformation mechanisms of Triplex steels

к carbides in ferritic matrix

30 nn

•Al2+ + Al3+

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Source: J-B. Seol et al., Scripta Mater. 68 (2013) 348 16

α/κ interfaces

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Source: J-B. Seol et al., Scripta Mater. 68 (2013) 348 17

conclusions

