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ABSTRACT 
 
Numerical methods of finding transient solutions to diffusion problems in two distinct 
phases that are separated by a moving boundary are reviewed and compared.  A new 
scheme is developed, based on the Landau transformation.  Finite difference equations 
are derived in such a way as to ensure that solute is conserved.  It is applicable to binary 
alloys in planar, cylindrical, or spherical geometries. 
 
The efficiency of algorithms which implement the scheme is considered.  Computational 
experiments indicate that the algorithms presented here are of first order accuracy in both 
time and space. 
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NOMENCLATURE 
 

( ,c c r t= )   Concentration. 

( ( ) , )Ac c s t t−=  Equilibrium concentration of phase A in contact with B. 
( ( ) , )Bc c s t t+=  Equilibrium concentration of phase B in contact with A. 

( ),0Rc c R=   Far field concentration. 

( )( ),A AD D c r t=  Diffusion coefficient in phase A. 

( )( ),B BD D c r t=  Diffusion coefficient in phase B. 
k    Geometrical constant. 

,M N    Number of discretisation points. 
( ),p p u t=   Concentration (in phase A). 

( ),q q v t=   Concentration (in phase B). 
r    Position. 
R    Position of far boundary. 

( )s s t=   Interface position. 

( ) ( )d
d
s t

s s t
t

= =  Interface velocity. 

t    Time. 
u    Proportional position (in phase A). 
v    Proportional position (in phase B). 

vδ    Spacestep (in phase B). 
 
λ  Constant related to geometry of system (1, 2 or 3 for planar, 

cylindrical or spherical respectively). 
σ    Constant between 0 and 1. 
 
Subscripts are used to denote discretisations of space. 
Superscripts are used to denote discretisations of time. 
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INTRODUCTION 
 
For physical systems of inhomogeneous composition, diffusion is often observed to cause 
a change of phase, even in material held at a constant temperature.  Understanding these 
phase changes is important, since the microstructure of an alloy can have a profound 
effect on its properties.  They are also central to many engineering processes, including 
the homogenisation of layers of foils [1] or powder blends [2] and the solidification of 
‘transient’ liquid phases [3, 4].  Phase changes can equally be induced by the diffusion of 
solute from some external source.  Although the conditions of these processes are rather 
different, they are equally industrially important, arising, for example, in problems of gas 
storage [5], and in the surface modification of particular components (either deliberately, 
through processes such as aluminisation [6], or unintentionally, as during the 
decarburisation of steels [7]). 
 
Diffusion-controlled phase changes can be described with reference to the situation 
drawn schematically in figure 1, where the concentration of solute ( ) varies with 
position ( ).  Differences in chemical potential energy are likely to be associated with 
such inhomogeneities, providing a driving force for the diffusion of matter.  Composition 
profiles in each phase therefore also depend on time ( ). 

c
r

t
 
It is routine to use differential equations, commonly called ‘Fick’s laws’, to model the 
way in which composition profiles evolve under the influence of diffusion [8].  Formulae 
of this type have been the subject of much research and are well understood.  However, in 
the present context, the analysis is complicated by the fact that diffusive processes occur 
simultaneously in two distinct phases. 
 
The concentration of one phase in contact with the other is generally fixed by a 
thermodynamic constraint.  But the rate at which solute diffuses towards the interface 
through phase A and the rate at which it is removed into phase B are not necessarily 
equal.  In order to conserve solute, therefore, the interface between the two phases must 
move.  Writing the interface position as ( )s s t= , the following set of differential 
equations can be used to model the complete system [9]: 
 

1 1( , ) ( , )( ( , ))A
c r t c r tr r D c r t

t r r
λ λ∂ ∂ ∂

∂ ∂ ∂
− −⎛ ⎞= ⎜ ⎟

⎝ ⎠
,  0 ( )r s t≤ ≤ , (1) 

1 1( , ) ( , )( ( , ))B
c r t c r tr r D c r t

t r r
λ λ∂ ∂ ∂

∂ ∂ ∂
− −⎛ ⎞= ⎜ ⎟

⎝ ⎠
,  ( )s t r R≤ ≤ , (2) 

[ ]
( ) ( )

( , ) ( , ) d ( )( ( , )) ( ( , ))
dA B B A t

−
r s t r s t

c r t c r t s tD c r t D c r t c c
r r− += =

∂ ∂
− =

∂ ∂
( )r s t,  = . (3) 
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The first equation describes diffusion to the left of the interface, in phase A; the second 
equation refers to diffusion in phase B, to the right of the interface; the third describes the 
moving boundary condition at the interface, and is derived by requiring that solute be 
conserved there (subject to the assumption that it is at local equilibrium – i.e. the 
concentrations are given by the equilibrium concentrations  and ).  Together, they 
form a coupled system of non-linear differential equations. 

Ac Bc

 
Although figure 1 illustrates the planar case, these formulae can be applied to any 
geometry for which a single parameter is sufficient to describe a location unambiguously.  
Equations (1)-(3) can therefore be used to describe cylindrically or spherically symmetric 
systems, where radial distances define positions uniquely.  λ=1, 2 or 3 is a parameter 
which describes the geometry of the system (planar, cylindrical or spherical respectively). 
 
Many of the situations in which diffusion-controlled phase changes are encountered 
typically involve isothermal conditions.  In order to model these processes, it is therefore 
reasonable to assume that the diffusion coefficients in equations (1) and (2) are functions 
of composition only, and the equilibrium concentrations in equation (3) are constant.  
Evidently, it is possible to construct models that can describe the behaviour of a system 
under non-isothermal conditions, or which incorporate the effects of heat flow.  However, 
the scope of the present work is limited to the isothermal case.  In addition, the Gibbs-
Thompson effect will be neglected. 
 
To complete the expression of the diffusion-controlled moving boundary problem, 
conditions at the fixed boundaries 0r =  and r R=  as well as initial conditions must be 
stated.  For the modelling of processes such as homogenisation, zero-flux boundary 
conditions are most appropriate.  A consequence of such conditions is that the solution 
must conserve solute.  This is the case that will be considered in the present work.  The 
most suitable initial conditions depend on the nature of the phase-change that is to be 
modelled.  For the kind of homogenisation operations described above, the concentration 
at every point lies in a one-phase region of the phase diagram.  But many metallurgical 
applications involve initial compositions that lie in the unstable two-phase region.  In 
precipitation reactions, for example, a stable phase region grows from a supersaturated 
matrix (whose concentration lies somewhere between  and ). Ac Bc
 
Some closed form solutions to equations (1)-(3) are known [10, 11].  However, these 
formulae are only valid if the diffusion coefficients  and  are assumed to be 
independent of concentration.  In addition, they are restricted to semi-infinite geometries 
in which one of the phases is of zero initial size (although the exact solution can 
admittedly be extended to cover the case where neither of the phases is of zero initial size 
in planar geometries). 

AD BD

 
Such highly restrictive conditions mean that it is not possible to construct an analytical 
model of many situations that are of practical or industrial importance.  In particular, the 
finite boundary conditions which are experienced by most real-life applications preclude 
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any such attempt.  Recourse must be made to numerical methods of approximating the 
exact solution to equations (1)-(3) instead. 
 
 

NUMERICAL SOLUTION TECHNIQUES 
 
Systems of differential equations with moving boundaries (also known as Stefan 
problems) arise in a variety of modelling situations across the sciences; many attempts 
have been made to solve them numerically, as Crank has reported in great detail [12].  
Furzeland, however, has noted that the most effective approach to solving a Stefan 
problem depends on the exact nature of the problem itself [13]. 
 
Many of the existing models developed specifically to describe diffusion-controlled 
phase changes have been limited to the planar geometry.  This constitutes the simplest 
case, yet is sufficient to model certain interesting applications, including transient liquid 
phase bonding [3].  The numerical techniques that have previously been developed can be 
broadly distinguished by considering the way in which they discretise space. 
 
The simplest methods [14, 15] solve the diffusion equations (1) and (2) by discretising 
space with a fixed mesh and imposing the requirement that the modelled position of the 
interface coincides with one of discretisation points.  This constrains the motion of the 
interface: it can only move in a step-wise manner, the nature of which is determined by 
the discretisation scheme.  As well as being physically unrealistic, this approximation 
might additionally be expected to give rise to significant errors, since inaccuracies in 
estimated interface positions will directly affect the predicted behaviour of the system. 
 
By including the interface position as a continuous variable in the model and solving a 
finite-difference form of equation (3) to predict its motion, it is possible to overcome this 
problem.  Shinmura et al. [16] did this to investigate possible interlayer materials for 
bonding nickel.  A similar model was developed by Zhou and North [17], who 
additionally introduced a quadratic expression for the concentration profile near the 
interface (in an attempt to better estimate the fluxes there and thus improve the accuracy 
of their method).  Extensions to include ternary systems have been implemented by 
Sinclair et al. [18], and the modelling of moving boundaries in cylindrical and spherical 
geometries is possible using the commercially available DICTRA code [19].  However, 
the precise mathematical details of this last algorithm remain rather unclear. 
 
Difficulties in tracking the motion of the interface arise because of the discontinuity in 
the concentration profile there.  Since the chemical activity of each species varies 
continuously across the sample, describing the way in which diffusion affects activity 
(rather than concentration) could potentially overcome these problems.  Then, interface 
positions could be extracted from the predicted activity profiles, negating the need to 
describe the interface position explicitly (and therefore simplifying the analysis) [20].  
Existing implementations of schemes based on this concept have been found to agree 
very well with known analytical solutions [21, 22]. 
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Although there are numerous advantages to this enthalpy-type approach, it also has a 
serious limitation: the algorithms cannot be used to model situations where 
concentrations are allowed to lie within the (thermodynamically unstable) 2-phase region.  
For many problems of practical interest to metallurgists (such as precipitation), 
instabilities of this kind are the very reason that there is a driving force for a change of 
phase in the first instance.  In these cases, the position of the interface must be modelled 
directly, using equation (3). 
 
Another way of dealing with the discontinuity at the interface is to use a discretisation of 
space which takes account of the motion of the interface.  Pabi, for example, wrote finite 
difference equations with reference to a discretisation at equal intervals of concentration 
[23].  Effectively, this amounts to reformulating the governing equations (1)-(3) in terms 
of  instead of .  Unfortunately, in this new co-ordinate system, the 
boundaries at  and  are no longer fixed.  This approach does not, therefore, 
simplify the problem. 

( , )r c t ( , )c r t
0r = r R=

 
On the other hand, the transformations proposed by Landau [24] do introduce a co-
ordinate system in which all of the spatial boundaries are fixed.  Numerical techniques 
based on this idea were first developed by Murray and Landis in 1959 [25], although 
applications to the modelling of diffusion-controlled phase changes came later, in the 
pioneering work of Tanzilli and Heckel [9].  Since then, the theory has been extended to 
include situations involving more than two species [26], more than one interphase 
boundary [27] and concentration-dependent diffusion coefficients [28]. 
 
The Landau transformation involves two new positional variables (one for each phase).  

If phase A extends from  to 0r = ( )r s t=  (as shown in figure 1), 
( )
ru

s t
=  fixes the 

extent of phase A to the domain 0 1u≤ ≤ .  Writing ( ),p p u t=  to denote the 
concentration in terms of this new positional variable (which coincides with  in 
phase A), the diffusion equation (1) can be written as [12] 

( , )c r t

[ ] [ ]
[ ]

1
1

2
Aus Dp u p pus s

t s u u us

λ
λ

−
− ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎜ ⎟

⎟
− =⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

1u,  0 ≤ ≤ , (4) 

where ( ) ( )d
d
s t

s s t
t

= = . 

 

For phase B, the domain  to r( )r s t= R=  can be described as 0 1v≤ ≤  if ( )
( )

r s tv
R s t
−

=
−

.  

Writing  to denote the concentration in this new co-ordinate system, 
the diffusion equation (2) can be written as 

(( , ) ,q q v t c r t= = )
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( ) ( )
[ ]

1
1

2
1 Bv R s s Dq v q q ⎟v R s s s

t R s v v vR s

λ
λ

−
−

⎛ ⎞− +⎡ ⎤∂ − ∂ ∂ ∂⎛ ⎞ ⎣ ⎦⎜− + − =⎡ ⎤ ⎜ ⎟⎣ ⎦ ∂ − ∂ ∂ ∂⎜ ⎟⎝ ⎠ −⎝ ⎠
0 1v,  ≤ ≤ . (5) 

The transformed version of the interface equation (3) is 

[ ]
1 0

d
d

A B
B A

u v

D Dp q sc c
s u R s v t= =

∂ ∂
− = −

∂ − ∂
1; 0,  u v . (6) = =

                                                

Although the new co-ordinate system has rendered the governing equations (4)-(6) into a 
form more complex than (1)-(3), it has simplified the problem in that all of the 
boundaries are now fixed.  Consequently, any of the advanced numerical methods 
originally developed to solve systems of partial differential equations with fixed 
boundaries can be applied to the problem.  Since these methods are well understood, it 
might be anticipated that accurate solutions will be found more easily using the 
transformed co-ordinate system than would otherwise be the case. 
 
A further advantage of using transformed space is that a constant (time-invariant) 
discretisation of  and v  corresponds to points whose position (in real space i.e. in the  
co-ordinate system) actually varies.  In other words, the mesh automatically adjusts itself 
to accommodate the motion of the interface, as shown in figure 2

u r

1.  It is therefore 
possible to introduce a non-uniform spatial discretisation that has a higher resolution in 
locations where large concentration gradients are expected (for example, near the 
interface).  This can lead to improvements in the accuracy of an algorithm without 
compromising its efficiency. 
 
The majority of the numerical models referred to above solve equations (1)-(3) (or, 
equivalently, (4)-(6)) with finite difference expressions that are explicit in nature.  There 
are consequently limitations of the size of timestep which can be used to find a 
numerically stable solution.  Accurate calculations therefore require a large 
computational effort. 
 
In order to overcome this limitation, it is possible to construct implicit finite difference 
schemes that are stable for any timestep.  However, this is not trivial, since the future 
interface position depends on future composition profiles (and vice-versa).  In other 
words, equations (1)-(3) form a coupled set of equations.  It follows that any implicit 
scheme must consider all 3 equations simultaneously.  Since the interface equation (3) is 
not linear, the entire problem involves solving a large system of non-linear equations at 
each timestep.  This is potentially very demanding in terms of computing time.  It follows 
that implicit schemes would not necessarily model moving boundary problems very 
much more efficiently than explicit methods. 
 
 

 
1 Note that this is not an ‘adaptive mesh’ inasmuch as the location of the discretisation points corresponds 
to fixed values of u  and ; no re-meshing calculations are required at any time. v
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A more fundamental problem with the existing algorithms is that none of them conserve 
solute2.  It is true that the way in which equations (1)-(3) (or, equivalently, (4)-(6)) were 
derived means that it is possible to ensure that solute is conserved (by imposing zero-flux 
conditions at  and r ).  However, the finite difference schemes used to 
approximate the governing equations have, in all cases, resulted in numerical solutions 
which do not conserve solute.  This problem has previously been identified by Crusius et 
al. [29] and further investigated by Lee and Oh [30]. 

0r = R=

 
As an example of this effect, consider the predictions of Zhou and North [17], which are 
reproduced in figure 3.  In order to model the bonding of nickel using Ni-P interlayers, 
they calculated how the half-thickness of a liquid layer varies when 10.223 at.% and 

0.166 at.%.  If the initial thickness and concentration of phase A is 12.5 µm and 19 
at.% respectively and if phase B initially contains no solute, it is possible to calculate a 
‘theoretical’ maximum thickness for the liquid layer: approximately 23.3 µm.  This 
‘maximum’ is exceeded by the numerical calculations, as can be ascertained from figure 
3.  The same is true of results generated from a model based on the Landau 
transformation and a standard discretisation of equation (6) [12], which was run using the 
same input parameters (

Ac =

Bc =

2 1500 m  secAD µ −= , 218 m  secBD µ 1−=  and 3012.5 mR µ= ) 
and a similar initial step size (1 micron) and time step (0.01 sec). 
 
It is emphasised that non-conservation of solute is an inherent problem with existing 
numerical schemes, and is not simply a consequence of computational inaccuracies such 
as rounding errors.  It arises because the numerical approximations used to calculate the 
fluxes near the interface when solving the interface equation (3) are different to those 
used when approximating the diffusion equations (1) and (2).  The extent to which a 
numerical solution gains or loses solute depends on the precise nature of the finite 
difference forms used.  In generally, it is non-negligible and is particularly large when 
large concentration gradients are present in the system [29, 30].  Some authors have even 
used this value to estimate the accuracy of their calculations [28]. 
 
Non-conservation of solute is clearly a source of inaccuracy in any numerical model, 
since the exact solutions to equations (1)-(3) satisfy the physical requirement that matter 
must be conserved.  Yet the accuracy of existing schemes is a question that has not been 
addressed in any great detail.  Certainly, the amount of solute lost or gained is related to 
the type of mesh that is used (as well as the details of the numerical scheme).  If errors 
associated with non-conservation are to be limited, it is necessary to fix a maximum 
allowable timestep.  Instead of identifying this maximum, previous workers have 
generally simply conducted calculations using rather fine discretisations of time.  
Restrictions of this type are required both for implicit and explicit schemes, and will 
obviously affect the efficiency of any non-conservative algorithm. 
 

                                                 
2This is not true of the enthalpy methods based on a description of the chemical activity gradients (rather 
than concentration); but other drawbacks of this method were pointed out earlier, so algorithms of this 
nature will not be considered any further. 
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By using alternative finite difference approximations for equations (1)-(3), it is possible 
to reduce the errors associated with non-conservation for both fixed mesh [29] and 
moving mesh [30] methods.  However, none of the proposed improvements actually 
render the algorithms conservative of solute.  The authors of the present work have 
previously shown that conservative schemes can be derived by adopting a different 
approach to modelling the interfacial fluxes [31]. 
 
These improvements are limited to the planar geometry.  Here, a conservative scheme 
which describes the behaviour of the diffusion-controlled moving boundary problem in 
cylindrical and spherical geometries is developed.  The resulting fully implicit algorithm 
can calculate solutions to a known accuracy for any spacestep or timestep. 
 
 

A CONSERVATIVE SCHEME 
 

Derivation 
 
Existing methods of solving the two-phase diffusion problem use finite difference forms 
based on the differential equations (3) or (6) to model the motion of the interface.  But all 
such numerical schemes fail to conserve solute.  In order to derive conservative forms, 
instead of solving for the motion of the interface directly, consider the total amount of 
solute present in the system.  At any time t , this quantity is given by 

[ ] ( ) ( )

( )
1 1

0 ( )

1 1
11

0 0

( , ) d ( , ) d

( ) ( , ) ( ) d ( ) ( , ) ( ) ( ) d

s t R

s t

c r t kr r c r t kr r

ks t p u t us t u k R s t q v t R s t v s t v

λ λ

λλ

− −

−−

+ =

+ − − +⎡ ⎤⎣ ⎦

∫ ∫

∫ ∫
 

where  is a geometrical constant (k 1k =  for the planar case, 2π  for the cylindrical and 
4π  for the spherical).  For the total amount of solute in the system to remain constant, 
this value must be time-invariant: 

[ ] ( ) ( )
1 1

11

0 0

( ) ( , ) ( ) d ( ) ( , ) ( ) ( ) d 0s t p u t us t u R s t q v t R s t v s t v
t

λλ −−⎧ ⎫∂
+ − − + =⎡ ⎤⎨ ⎬⎣ ⎦∂ ⎩ ⎭

∫ ∫ . (7) 

In order to calculate a solution based on this expression, it is necessary to modify the 
diffusion equations too.  To do so, note that the identities 

[ ]( )
[ ] [ ] ( )[ ]

1

1 1 1
ps us ps us p us s ps us us

t t

λ

λ λ λ
−

− −
∂ ∂

≡ + + −
∂ ∂

2λ−       and 

[ ]( )
[ ] [ ] ( )[ ]

1

1 1 1
pu us pu us p us pu us s

u u

λ

λ λ λ
−

− −
∂ ∂

≡ + + −
∂ ∂

2λ−  
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can be used to express equation (4) as 

[ ]( ) [ ]1 1 AD pps us us spu
t u s u

⎞∂ ⎫
⎬⎟∂

λ λ− −⎛∂ ∂ ⎧= +⎨⎜∂ ∂ ⎩ ⎭⎝ ⎠
1u,  0 ≤ ≤ . (8) 

Similar identities can be used to cast equation (5) into ‘divergent’ form: 

( ) ( )( )
( ) ( )

1

1
1 B

q R s v R s s D qv R s s sq v
t v R

λ

λ

−

−
∂ − − +⎡ ⎤⎣ ⎦ ⎛ ⎞∂ ∂

s v
⎧ ⎫= − + − +⎡ ⎤ ⎨ ⎬⎜ ⎟⎣ ⎦∂ ∂ −⎩ ⎭⎝ ⎠∂

1

, 

0 v≤ ≤ . (9) 
 
In the same way that equations (1)-(3) or (4)-(6) provide a complete mathematical 
description of the two-phase diffusion-controlled moving boundary problem, the physical 
requirements of the system are fully expressed by equations (7)-(9), though the interface 
equation is now expressed in an integral form (as opposed to a differential form).  The 
new formulation is rather more complicated than both those presented in the previous 
section, but it will be shown presently that they can be used to derive a finite difference 
scheme which conserves solute (and which might therefore be expected to be more 
accurate). 
 
In order to derive a finite difference scheme, space is discretised at 1M +  points.  The 
first  points are given by a fixed discretisation of , which corresponds to the 
extent of phase A.  Using a subscript notation to denote discretisations of space, the 
points in phase A are written as 

1N + u

0 10, ,..., 1Nu u u= = , as indicated in figure 2.  The last 
 points are in phase B and are given by a fixed discretisation of v  (at 

).  Discretisations of time will be indicated using superscripts (e.g. 
1M N− +

10, ... 1N N Mv v v+= =
jt ). 

 
Now integrate the divergent form of the diffusion equations (8) and (9) around each node 
over one timestep.  In phase A, 

( )( ) ( )
1 11 1

2 2

1 1
2 2

1 1d d d d
j ji i

j j
i i

u u
t t

A

u ut t

D pps su t u su spu u t
t u

λ λ
+ ++ +

− −

− −⎛ ⎞∂ ∂ ⎛ ⎞= +⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠
∫ ∫ ∫ ∫ s u

∂
∂

 
can be re-written as 

( ) ( ){ }

( ) ( ) ( ) ( )

1
2

1
2

1

1 11 1 1

1 11 1
2 2

1 1 1 1 1 1
2 2 2 2 2 21 1

2 2

d
i

i

j

j

u

j j j j j j

u

t A Ai i

i i i i i i
i it

p s s u p s s u u

D Dp psu sp u su sp u dt
s u s u

λ λ

λ λ

+

−

+

− −+ + +

− −
+ −

+ + + − − −
+ −

− =

⎧ ⎫⎛ ⎞ ⎛∂ ∂⎪ ⎪⎜ ⎟ ⎜+ − +⎨ ⎬⎜ ⎟ ⎜∂ ∂⎪ ⎪⎝ ⎠ ⎝⎩ ⎭

∫

∫
⎞
⎟
⎟
⎠

Taking a constant, j
ip , to approximate the variable ( ),j jp p r t=  over the interval 
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1
1 1

2 22 2
i i i i

i i

u u u uu u u−
− +

+ +
= ≤ ≤ = 1+  (and similarly for 1j

ip + ), it is possible to simplify the 

integral on the left hand side of this equation: 

( ) ( ){ } ( ) ( ) ( ) ( )
1

2

1
2

11 11 1 1 1 1
1 1 1 1

2 2 2 2
d

i

i

u
j j

j j j j j j j j j ji i
i i i i

u

p pp s s u p s s u u r r r r
λ λ λλ λ

λ λ

+

−

+
− −+ + + + +

+ − + −

λ⎧ ⎫ ⎧
− ≈ − − −

⎫
⎨ ⎬ ⎨
⎩ ⎭ ⎩ ⎭∫ ⎬

where the notation 1
2

j
i

r
±

 is used for 1
2

j
i

s u
±

. 

 
To discretise the right hand side of the equation, introduce a parameter σ , such that 
0 1σ≤ ≤ .  Then, taking a constant ( )1 1j j

i i
j

ip pσ σ σ+ += + − p  to approximate the 

concentration around  over the interval between iu
jt  and 

1jt +
, the integral can be solved 

to give the following finite difference scheme for diffusion in phase A: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1

1 1 1 11 2 2 2 2

1 11 1
2 2

1 1 1 1 1 1
2 2 2 2 2 21 1

2 2

1 j j
j j j ji i

j j i i i i

j j
j j

A Ai ij j j j j j
j ji i i i i i

i i

p pr r r r
t t

D Dp pr s p u r s p u
s u s u

λ λ λ λ

σ σ
σ σλ λ

σ σ σ σ σ σ
σ σ

λ λ

+
+ +

+ + − + −

+ +
+ +− −

+ −+ + + + + +
+ ++ + + − − −

+ −

⎡ ⎤⎧ ⎫ ⎧ ⎫
− − − =⎨ ⎬ ⎨ ⎬⎢ ⎥− ⎩ ⎭ ⎩ ⎭⎣ ⎦

⎧ ⎫ ⎧
∂ ∂⎪ ⎪ ⎪+ − +⎨ ⎬ ⎨∂ ∂⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎪

⎫
⎪
⎬
⎭  

 1, 2,..., 1i N= − . (10) 

To find the numerical scheme for phase B, equation (9) is integrated over one spacestep 
and one timestep.  The following expression can then be derived: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
1 1

1 1 1 11 2 2 2 2

1 11 1
2 2

1 1 1 1 1 1
2 2 2 2 2 21 1

2 2

1

1 1

j j
j j j ji i

j j i i i i

j j
j j

B Bi ij j j j j j
j ji i i i i i

i i

q qr r r r
t t

D Dq qr s q v r s q v
R s v R s v

λ λ λ λ

σ σ
σ σλ λ

σ σ σ σ σ σ
σ σ

λ λ

+
+ +

+ + − + −

+ +
+ +− −

+ −+ + + + + +
+ ++ + + − − −

+ −

⎡ ⎤⎧ ⎫ ⎧ ⎫
− − − =⎨ ⎬ ⎨ ⎬⎢ ⎥− ⎩ ⎭ ⎩ ⎭⎣ ⎦

⎧ ⎫ ⎧
∂ ∂⎪ ⎪− + − − +⎨ ⎬− ∂ − ∂⎪ ⎪⎩ ⎭

⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 1, 2,..., 1i N N M= + + − . (11) 

where now 1
2

j
i

r
±

 is used for ( ) 1
2

j j
i

R s v s
±

− − . 

 
The left hand side of equations (10) and (11) correspond to the change in the amount of 
solute in element  over the interval between i jt t=  and 1jt t += .  This must be balanced 
by the right hand side, which relates to the difference between the amount of solute 
diffusing into the element and the amount diffusing out (the terms involving ), 
corrected for the changing size of the element (the advection-type terms involving ). 

D
s

 
To generate a finite difference form of the conservation equation (7), it is necessary also 
to derive finite difference approximations for the concentrations at the boundaries 
(  and 0,i = N M ), where equations (10) and (11) do not apply.  At the moving interface, 
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local equilibrium implies that 1j j
N Np p c+

A= =  and 1j j
N Nq q c+

B= = .  For the fixed 

boundaries, on the other hand, zero flux requirements (
0

0
u

p
u =

∂
=

∂
 and 

1

0
v

q
v =

∂
=

∂
) are 

imposed.  Integrating (8) between  and 0u 1
2

u  and (9) between 1
2M

v
−

 and Mv , it is 

possible to derive the relationships 

( ) ( ) ( ) ( )
( )

1 1 11 10 0 2
1 1 1 1 1

2 2 2 2 2 1
2

j
jj j Aj j j j j j

j

Dp p pr r r s p u t
s u

σ
σλ λ λ

σ σ σ
σλ λ

+
++ −

+ + + +
+

⎧ ⎫⎡ ⎤
∂⎧ ⎫ ⎧ ⎫ ⎪ ⎪⎢ ⎥− = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂⎩ ⎭ ⎩ ⎭ ⎪ ⎪⎣ ⎦⎩ ⎭

jt+ − , and 

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

1
1
1 1

2 2

1 1 12
1 1 1

2 2 2 1
2

1

j j
j jM M

M M

j
j

B Mj j j j
jM M M

M

q qR r R r

D qr s jq v t
R s v

λ λ
λ λ

σ
σλ

σ σ σ
σ

λ λ

+
+
− −

+
+−

−+ + + +
+− − −

−

⎧ ⎫ ⎧ ⎫
− − − =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
⎧ ⎫⎡ ⎤

∂⎪ ⎪⎢ ⎥− − +⎨ ⎬⎢ ⎥− ∂⎪ ⎪⎣ ⎦⎩ ⎭

t−

 

 
These equations have been written in such a way as to include the untransformed co-
ordinate j

ir .  That notation, which corresponds to the physical position of each node at 
each timestep, is used as shorthand for the following relationships: 

( )

if 
if 
if 

j
i

j j
i

j j
i

u s i N
r s

i NR s v s

⎧ <
⎪⎪= =⎨
⎪ >− +⎪⎩

i N . 

 
To discretise the interface equation (7), the integrals are converted to finite sums.  The 
difference between the amount of solute in each element at time 1jt +  and the amount at 
time jt  is given by terms such as 

( ) ( ) ( ) ( )1 1 1
1 1 1 1

2 2 2 2

j j j j j j
i ii i i i

p r r p r r
λ λ λ

+ + +
+ − + −

⎧ ⎫ ⎧ ⎫
− − −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

λ

 and 

( ) ( ) ( ) ( )1 1 1
1 1 1 1

2 2 2 2

j j j j j j
i ii i i i

q r r q r r
λ λ λ

+ + +
+ − + −

⎧ ⎫ ⎧ ⎫
− − −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

λ

, 

for which alternative expressions are available (equations (10) and (11)).  Substituting 
into the sum given by the finite difference form of (7), massive cancellation occurs and 
only terms near the interface are left.  The interface equation can be therefore be 
expressed as 
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( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 11 2
1 1 1

2 2 2 1
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1 1 1 1
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2 2 2 2

1 11 2
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2 2 2
1

j
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σ σ σ
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−

+ + + +
− − + +

+
−

++ + + +
++ + +
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∂⎪ ⎪− + +⎨ ⎬∂⎪ ⎪⎩ ⎭

⎛ ⎞ ⎛
− − + + − − +⎜ ⎟ ⎜

⎝ ⎠ ⎝

− − − −
−

⎞
+⎟
⎠

1
2

0
j

N

q
v

σ

σ

+

+

⎧ ⎫
∂⎪ ⎪ =⎨ ⎬
∂⎪ ⎪⎩ ⎭

 

 (12) 

 
Equations (10)-(12) form a complete discretisation of the problem described analytically 
in equations (7)-(9), subject to zero-flux boundary conditions.  The way in which they 
were derived has ensured that solutions calculated numerically using these expressions 
will conserve solute.  In view of the paucity of data regarding the way in which diffusion 
coefficients depend on concentration for the majority of chemical systems, the remainder 
of this work makes the simplifying assumption that they are constant. 
 
 

Implementation 
 
In order to calculate a numerical solution using equations (10)-(12), particular 
approximations for the terms that fall between discretisation points (i.e. at times j σ+  

and positions 1
2i ± ) must be chosen.  It is also necessary to determine a method of 

solving the resulting set of simultaneous equations.  Since these questions relate directly 
to the overall accuracy and efficiency of the algorithm, it is worth considering them 
carefully. 
 
It is well known that explicit schemes ( 0σ = ) only produce numerically stable solutions 
to diffusion problems when the timestep is smaller than some critical value, whereas any 
value of the timestep can be used with implicit schemes for which 1

2σ ≥  [32, 33].  It is 

also known that any partially implicit scheme (including the Crank-Nicolson scheme 
( 1

2σ = )) can give unphysical oscillations in cases where large concentration gradients 

are present [32, 34]. 
 
Large gradients are typical of diffusion-controlled phase changes.  In order to generate 
realistic solutions, a maximal timestep must therefore be imposed for a given 
discretisation of space.  When the spacestep is small, this auxiliary condition can be more 
restrictive than the stability requirement, rendering the methods very inefficient.  Since 
fully implicit schemes ( 1σ = ) are not subject to such restrictions, attention in the 
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remainder of this work is limited to algorithms of this kind, though the velocity term will 

be taken to be 
1

1

j j
j

j j

s ss
t t

σ
+

+
+

−
=

−
. 

 
Unphysical, oscillating solutions can also be generated if approximations for the terms at 
intermediate positions are not chosen carefully.  For example, non-monotonic profiles 

can be predicted if the centred-difference approximation, 
1 1

1 1
1

2 2

j j
j i i

i

p pp
+ +

+ ±
±

+
= , is used [34, 

35].  On the other hand, the first order up/down-wind approximations: 
1 1
1

2

j j
ii

p p+ +
−

= , 1
1

2

j
ii

1
1

jp p+
++

= +  if the velocity is positive ( 1j js s+ > ) 
1 1
1 1

2

j j
ii

p p+ +
−−

= , 1
1

2

j
ii

1jp p+
+

= +  if the velocity is negative ( 1j js s+ < ) 

do not, no matter what kind of discretisation scheme is used [34, 35].  It follows that this 
type of approximation is preferable to the centred-difference formulae, even though it is 
only of first order accuracy. 
 
When substituted into equations (10)-(12), a set of simultaneous equations is generated.  
These involve  unknowns: the future concentrations 3M +

1 1 1 1 1 1
0 1 1, ,..., , , ,...,j j j j j j

N N N Np p p q q q+ + + + + +
+ M+  and the future interface position 1js + .  Since all of 

the equations are coupled, if the implicit scheme is to conserve solute, the entire system 
must be solved simultaneously.  But the fact that they form a non-linear system means 
that this is potentially very demanding in terms of computing time. 
 
It is interesting to note, however, that equations (10)-(12) are only weakly coupled: if the 
future interface position 1js +  were known, the diffusion problems (10) and (11) would 
become linear.  (In fact, they could each be written as a tri-diagonal matrix equation, a 
form for which cheap inversion algorithms are available [36].)  Conversely, if future 
concentrations were known, the future interface position could be calculated from 
equation (12) relatively easily. 
 
For the planar case, the authors have already shown that it is possible to implement an 
efficient algorithm based on de-coupling the problem in this way [31].  The approach 
amounts to ‘coefficient freezing’: firstly, future compositions are calculated using some 
fixed estimate of 1js + ; in turn, the concentration profile is frozen and a corrected estimate 
for the future interface position is calculated.  In order to improve the accuracy of the 
estimates, the process is then repeated. 
 
An iterative algorithm that considers equations (10), (11) and (12) sequentially therefore 
obviates the need to solve a large system of non-linear equations simultaneously.  
Nevertheless, the non-linear equation (12) must still be solved at each iteration.  
Although it only involves one unknown, finding an exact solution is not trivial.  
Furthermore, any estimate is likely to be refined by further iterations.  Therefore, rather 
than finding an exact solution to equation (12) for a particular frozen concentration 
profile, it may be adequate simply to find an approximate solution.  In the planar case, for 
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example, a linearised version of equation (12) was found to provide a sufficiently 
accurate solution without otherwise affecting the algorithm [31]. 
 
A linearisation for the spherical case is constructed using some estimated future interface 
position, 1js + , and future concentrations, 1j

ip +  and 1j
iq + .  An approximate root (which can 

then be used as an improved estimate of the interface position) is given by 1
*
js + , where 

( )

( ) ( ) ( )
( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

2 2
1 1 1 1
1 1 1 1 1 1

2 2 2 2 2 2

2 22 21 1 1 1 1
* 1 1 1

2 2 2 2 2

2 22 21 1 1 1
1 1 1 1 1

2 2 2 2 2

3 3 1

1

j j j j
N N N N N N
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+ + + + +
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+ + + +
+ + + + +

⎡
⎢ − −

⎧ ⎫⎛ ⎞
− + + + − + +⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞

− + + − + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭⎣
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1 1

( ) ( )1 12 2
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1 11 12 21 1
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0 1

j j
j j j jN B A NB A

j jN N
N N

q c c pD Dt t r r
R s v s u

+ +
+ + ++ −

+ ++ −
+ −

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦
⎡ ⎤− −
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 (13) 

 
The basis of an efficient algorithm for solving equations (10)-(12) is now clear - at each 
timestep: 

1) Take  ,   and pi
j qi

j js  as initial estimates of 1j
ip + , 1j

iq +  and 1js + . 
2) Calculate 1

*
js +  using equation (13). 

3) Update   s j+1  using this value. 
4) Calculate 1j

ip +  and 1j
iq +  using the tri-diagonal matrices which result from (10) and 

(11) (along with the boundary conditions). 
5) Update 1j

ip +  and 1j
iq +  using these values. 

 
Steps 2-5 are then repeated until successive estimates of the interface position 1js +  differ 
by less than some fixed tolerance.  If the series of estimates does converge to some fixed 
value, it will correspond to a solution of the implicit set of discretised equations (10)-
(12). 
 
Computer code implementing this fully implicit and conservative algorithm has been 
prepared for the planar and spherical geometries (λ=1 and 3).  In the planar case, de-
coupling and linearising the problem as described above produces a convergent series of 
estimated interface positions in all of the cases investigated so far.  In the spherical case, 
the series sometimes fails to converge.  Problems of this nature arise when one of the 
phases becomes very small and the interface velocity becomes very high.  In such cases, 
it was found that a solution could be generated by decreasing the timestep.  Under most 
circumstances, however, any discretisations of space and time lead to convergent 
solutions.  The non-convergence of solutions is only likely to be a problem in 
investigations where the disappearance of one of the phases is of primary interest. 
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In the next subsection, various results calculated using the code are presented.  By 
comparing numerical approximations with the available analytical solutions, the accuracy 
of the algorithm will be ascertained. 
 
 

RESULTS AND VALIDATION 
 
Before addressing any other issue regarding output from the algorithm, it is confirmed 
that the numerical scheme conserves solute (to within rounding accuracy) in every 
calculation.  Consider, for example, figure 3, where it is used to predict how the interface 
position varies as a function of time for one particular planar system.  All of the 
calculations use the same input parameters and the time- and space-step in both of the 
models based on the Landau transformation are the same.  The traces are all qualitatively 
similar, with one significant difference: the new scheme does not predict that the 
thickness of the liquid layer will exceed the theoretical maximum. 
 
The question of whether the solution is accurate remains.  For particular initial and 
boundary conditions, analytical solutions are available to describe the motion of an 
interface which is driven by diffusion [10].  These are all based on Zener’s expression for 
the concentration profile in an infinitely large matrix phase surrounding a homogenous 
growing phase region that is infinitely small at time 0t =  [11].  For this case, the 
concentration profile is given by 

( ) ( )
( )

,
4

B

B

c c rc r t c I
I D t

∞
∞

⎛ ⎞−
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
λ

λ κ
, 

21( ) v

u
I u v eλλ

∞ − −= ∫ dv , (14) 

where  is a constant that depends on the geometry of the system (i.e. κ λ ), as well as , 
 and  (the initial concentration of the matrix): 

Ac

Bc c∞

( ) 2

2 B

B A

c cI e
c c

∞−
=

−
λ κ

λκ κ  

A concentration profile of this nature implies that the position of the interface moves in a 
parabolic manner: 

( ) 4 Bs t D tκ= . (15) 

The availability of an exact solution affords an opportunity to asses the accuracy of the 
numerical scheme.  However, the exact solution describes the situation where one phase 
(A) is initially infinitely small and where the other (B) is infinitely large, whereas the 
numerical solution has been developed to describe a system in which there are two 
phases, each of which is of a finite size.  Despite this apparent difficulty, it is still 
possible to compare the two models. 
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Firstly, note that the finite extent of phase B does not affect the behaviour of the system 
so long as there is no diffusion taking place at the far end ( r R= ).  It is therefore 
appropriate to compare numerical and analytical predictions at ‘short’ times (when the 
effect of the far boundary is not significant).  Secondly, the size of phase A is only zero 
for .  Therefore, if the numerical calculations are initialised using the exact solution 
at some finite time (when phase A is of finite extent and homogenous in composition), 
the algorithm can be used to solve the early stages of the problem for which analytical 
formulae are available.  It is then possible to compare numerical results with the exact 
solution. 

0t =

 
Numerical calculations have therefore been conducted for a system where atomic 
fractions of 0.4 and 0.2 are taken as values for the interfacial composition in phases A 
and B respectively, and where the far-field value is 0.3.  For a geometry where 1R =  and 

, the model was initialised using the exact profiles for a time of 0.0001 (in the 
planar case) and 0.025 (in the spherical case) and run with a various meshes.  Some of the 
associated results are presented in figure 4. 

1BD =

 
According to equation (15), the interface position should vary with the square root of 
time.  This behaviour is reflected in both figures 4(a) and 4(b).  However, there are some 
inaccuracies in the predictions.  These arise due to the finite difference approximations 
used for (4)-(6); naturally, the magnitudes of the errors depend on the discretisation, as 
well as the overall accuracy of the numerical scheme. 
 
In order to investigate the way in which particular choices for the timestep affect the 
accuracy of predictions, a very large number of nodes (10 000) was fixed, and 
calculations repeated for a various different timesteps.  For each set of calculations, the 
difference between the numerical predictions and the exact solution was calculated; 
associated data are presented in figure 5.  Further increases to the spatial resolution were 
found to have no discernable effect on the accuracy of the algorithm, indicating that the 
errors shown on figure 5 are dominated by the coarse discretisation of time. 
 
For both geometries, decreasing the timestep improves the accuracy of the model: 
halving the timestep decreases the error by a factor of approximately two.  This 
demonstrates that the algorithm is first order accurate in time.  In fact, the planar model 
performs rather better than that, as halving the timestep reduces the error by a factor 
slightly greater than two. 
 
In figure 6, the error in the solution calculated by the numerical algorithm is shown for 
various different spacesteps.  Because it uses a transformed co-ordinate system, the 
spatial variables  and  are discretised rather than real space.  Since the analytical 
solution with which the numerical model is being compared is only valid when phase A 
is uniformly at its equilibrium concentration, , the behaviour of the numerical system 
is determined purely by the spacing between nodes in phase B, 

u v

Ac
vδ .  The results clearly 

indicate that increasing the number of points in phase B (i.e. decreasing vδ ) means that 
more accurate solutions can be calculated.  As might be expected of a model that uses 
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simple up/down-wind approximations, the algorithms describing both the planar and the 
spherical geometries are first order accurate in space. 
 
As previously mentioned, one advantage of discretising the problem in transformed space 
is that the meshes automatically adjust themselves to accommodate the moving interface 
position.  It is therefore possible to impose irregular meshes with fine resolution in 
regions where large concentration gradients are expected (near to the interface, for 
example) and larger spacesteps elsewhere.  The results plotted in figure 4 correspond to 
calculations completed using both irregular and regular meshes.  It is clear that, for a 
given number of discretisation points, it is possible to find significantly more accurate 
solutions by using irregular meshes.  In this way, errors can be reduced without requiring 
any extra computational effort. 
 

SUMMARY 
 
Certain industrial procedures involve diffusion in two-phase binary systems, a process 
which can be described mathematically by a system of three differential equations.  
Although the equations themselves are simple, the analysis of the problem is complicated 
by the fact that the interface between the two phases can move.  Few analytical solutions 
to this type of problem are available; methods of finding numerical approximations are 
therefore of interest. 
 
Two broad approaches to the modelling of diffusion-controlled phase changes have been 
identified in the literature.  In the first, a fixed discretisation of space is imposed and the 
motion of the interface is tracked across this mesh.  Models of this type [14-19, 30] do 
not involve complicated mathematics.  However, this method of discretisation means that 
it is difficult to model the motion of the interface very precisely.  The overall accuracy of 
these numerical solutions is consequently unclear.  To overcome these difficulties, it is 
possible to treat the chemical activity instead of concentration [20, 21].  But doing so 
precludes the modelling of important phenomena, where the concentration away from the 
interface lies in the two-phase region. 
 
A second approach, which is capable of handling this situation, uses a discretisation of 
space which varies according to the motion of the interface.  This essentially amounts to 
re-formulating the problem in terms of another spatial co-ordinate system in which the 
positions of all of the boundaries are fixed.  Models of this type [9, 26-29] have the 
advantage that, although the governing equations are rendered more complicated, well 
known techniques can be used to solve them.  It is then possible to calculate accurate 
solutions more easily than would otherwise be the case. 
 
Solute fluxes near the interface affect both the motion of the interface and the evolution 
of the concentration profile.  All previous work has developed finite difference equations 
to describe either problem independently.  For this reason, none of the existing numerical 
solutions conserve solute.  This is clearly a source of inaccuracy, since the conservation 
of solute is a physical requirement of the exact solution to the moving boundary problem.  
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In the present work, a fully implicit, conservative finite difference scheme has been 
developed to solve the system of differential equations associated with two-phase 
diffusion-controlled moving boundary problems.  It can be used to describe the behaviour 
of binary systems in planar, cylindrical or spherical geometries.  The basis upon which 
the model could be extended to model two- (or three-) dimensional geometries is well 
established [12]. 
 
Issues pertaining to the efficient implementation of the algorithm have been addressed.  
In particular, it has been possible to solve most problems of interest by de-coupling the 
three problems (interface motion, diffusion in phase A and diffusion in phase B).  This 
means that the problems are treated sequentially, rather than simultaneously, in which 
case efficiency can be further improved by linearising the equation that describes the way 
in which the interface moves. 
 
Numerical results indicate that the algorithm does indeed conserve solute and is of first 
order accuracy in both space and time.  Predictions are in close agreement with the 
available analytical solutions.  The computer source code that was used to produce the 
results presented here is freely available for download from the Materials Algorithm 
Project website: (http://www.msm.cam.ac.uk/MAP). 
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FIGURE CAPTIONS 
 
Figure 1:  Schematic illustration of the concentration profile in the vicinity of a transient 
liquid phase.  Although the diagram represents a planar geometry, the techniques 
developed in this work can also be applied to cylindrically and spherically symmetric 
geometries. 
 
 
Figure 2:  The Landau transformation introduces new positional variables for which the 
interval [ ]0,1  corresponds to the extent of one of the phases.  A fixed discretisation of 
these variables therefore corresponds to points whose position in real space can be 
considered to be automatically adjusting to accommodate the motion of the interface. 
 
 
Figure 3:  Predicted variation of liquid-layer half-thickness with time during the bonding 
of nickel.  The numerical predictions of Zhou and North [17] are compared with results 
calculated using the algorithm developed in the present work and results generated by a 
scheme that uses the Landau transformation without modifications to ensure that solute is 
conserved.  The theoretical maximum thickness of the liquid layer (see text) is also 
indicated. 
 
 
Figure 4:  For particular initial and boundary conditions, an exact solution is available.  
The interface position is predicted to vary with the square root of time; numerical results 
are in reasonable agreement.  (a) Planar geometry.  (b) Spherical geometry. 
 
 
Figure 5:  The accuracy of the model is strongly influenced by the magnitude of the 
timestep.  These results indicate that the algorithm is at least of first order accuracy. 
(a) Planar geometry.  (b) Spherical geometry. 
 
 
Figure 6:  The accuracy of the model is also affected by the choice of spacestep: the 
algorithm is first order accurate in space.  (a) Planar geometry.  (b) Spherical geometry. 
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