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1 How the Program Works

The Fatigue Life Predictor for SLIMMER (FLiPS) is a graphical user in-
terface (GUI) for three independent committees of artificial neural networks
(ANNs). Artificial neural networks are a powerful and highly adaptable form
of model that may be fitted to source data to allow predictions to be made.
FLiPS was made using over 15,000 datasets from the JApanese NAtional
Research Institute for MEtals (NRIM).

Artificial neural networks are so named as they mimic (crudely and qual-
itatively) the human brain. All inputs are repeatedly combined to form a
series of hidden units, which are then combined to produce the output. This is
shown schematically in figure 2. Algebraically, the ANN can be summarised
by equations 1–3, where xi is the ith input variable, wij is the weighting
parameter that relates all n inputs to the jth hidden unit, hj; θj is an offset
associated with the jth hidden unit; wi is the weighting factor that relates
the jth hidden unit to the output, y; p is the number of hidden units and
thetay is an offset related to the output parameter.

hj = θj +
i=n
∑

i=1

wijxi (1)

y = θy +

j=p
∑

j=1

wj tanh (hj) (2)

y = θy +

j=p
∑

j=1

wj tanh

(

θj +
i=n
∑

i=1

wijxi

)

(3)

The weighting parameters and offsets are fitted to source data. The use of
the hyperbolic tangent (tanh function allows a very flexible fit and so virtually
any function may be approximated using an artificial neural network. Since
there are a large number of fitting parameters, it is very possible that the fit
is erroneous. On the other hand, the fact that the fit is non-physical means
that no knowledge of the physical relationship between inputs and outputs
is required. To mitigate the possibility of an erroneous fit, FLiPS utilises a
committee approach: multiple networks are produced from different starting
points and fitted independently. This gives several independent predictions.
The mean of all these predictions is presented as the prediction.

The predictive power of the network depends strongly on both the number
of variables used to produce a fit, how well the model is able to reproduce
data (i.e. how good the model is) and how many data there are with similar

1



x1

x2

xi

xn

hj

w1j

w2j

wij

wnj

+θj

tanh (h1)

tanh (h2)

tanh (hj)

tanh (hp)

y

w1

w2

wj

wp

+θy

Figure 2: Schematic representation of an artificial neural network. The ith in-
put is multiplied by a weighting factor, wij. All n products are then summed
together with an offset, θj, to produce the jth hidden unit. All p hidden
units are then multiplied by new weighting faactors, wi and all products are
added together with a final offset, θy to produce the output, y.

values to the input variables. To avoid overfitting, only a fraction of the
available data is used (FLiPS uses 50%, called the training data). Another
subset of the data is used to test the fit and is not used to refine the variables.
This subset (30% in FLiPS) is the test data. The remaining 20% of data,
termed the validation dataset, is held back to assess the predictive ability of
the whole model.

The disagreement between the actual values, zi and the predicted values,
yi of the test data is used to provide a measurement of the model’s fit,
called the test error, Etest (equation 4). The lower the test error, the more
closely the model fits the observed data. However, this does not necessarily
imply predictive ability, as the good performance of the model may only
be valid for a very limited set of inputs. Test error also does not account
for the certainty of predictions of the model. FLiPS uses Bayes’ theorem
to assess the confidence of the prediction. In general, the more source data
there are, the greater the confidence in the prediction. Discrepancies between
predictions and actual values are less significant if the model is less able to
make predictions for the given input data. In other words, when there are
few source data, the model is penalised less for any disagreement between
calculated and observed values, since it is not reasonable to expect as strong a
prediction than if there are many source data. The confidence in predictions
may be accounted for using a quantity called the variance of the model, σ,
which is dependent on the inputs used to produce a prediction. This is not
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a true variance, but is analogous to variance in statistical distribution as it
represents the range within which the true prediction will lie 66.7% of the
time. Doubling this uncertainty gives the range in which the prediction will
lie 95% of the time, tripling it 99% of the time, etc. A measurement of the
model’s predictive ability which includes this variance is the log predictive

error, Elp (equation 5).

Etest =
m
∑

(zm − ym)
2 (4)

Elp =
m
∑

(

(zm − ym)
2

2σ2
m

+ log
(

σm

√
2π
)

)

(5)

As inferred previously, FLiPS uses a committee approach to increase the
confidence and accuracy of predictions. Each model that is made is assessed
using both Etest and Elp. Combinations (or committees of the best perform-
ing models are tried and Etest and Elp are calculated for the combinations.
The best performing committee is selected to form the final model and all
weighting parameters and offsets are re-refined for this committee.

FLiPS was produced using the Neuromat Model Manager [1] software
package, which in turn uses the Bigback5 ANN refinement procedure [2].
Bigback5 uses a technique called backpropagation to derive the uncertainty
in the prediction. It allows up to 25 models to be created, with up to 9
different starting values. This gives a maximum of 25× 9 = 255 predictions.
The 25 best performing individual models were then averaged in various
combinations to find the best-performing committee.

In order to account for the varying magnitudes in input values which are
all treated in same manner during (e.g. yield and ultimate tensile strength
are of the order of 103MPa, but stress concentration factors are of the order
of 1), all inputs and outputs are normalised according to equation 6, where
xmin and xmax are the minimum and maximum values of the variable in
the input data, such that all values lie in the range −1

2
≤ xnorm ≤ 1

2
. The

refinement is carried out using normalised values and the prediction provided
by each model is itself normalised using the fatigue lives in the input data.
Normalised values may be unnormalised using equation 7, which is rearranged
from equation 6.

Since fatigue lives range from hundreds of cycles to billions (102–109),
it is extremely difficult for a model to predict small values with any accu-
racy, as an uncertainty of 108 cycles is relatively small for a prediction of
109, but astronomical for a prediction of, say, one million (106) cycles. To
mitigate this, all fatigue lives in the source data were converted to (decadic)
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logarithms before training the models. Predictions are, correspondingly, the
logarithms of fatigue life, although FLiPS converts these to actual fatigue
lives before displaying them to the user. One drawback of this approach is
that uncertainties, which are ± for the logarithm of fatigue life generated by
the model are effectively uncertainty factors, i.e. the fatigue life prediction
must be multiplied and divided by the uncertainty to determine the range in
which the true prediction could lie.

xnorm =
x− xmin

xmax − xmin

−
1

2
(6)

x =

(

xnorm +
1

2

)

× (xmax − xmin) + xmin (7)

2 Starting the Program

FLiPS was developed using Qt versions 5.7 and 5.8 for MacOS. Once built,
it was deployed for Mac with static libraries, meaning that all required re-
sources should be included with the FLiPS application (CTRL+click and
select “Show Package Contents” to see the resources included with the ap-
plication). FLiPS will also be deployed for Windows, Linux/Unix, Android
and iOS.

The FLiPS application is provided ready-to-use. In other words, no in-
stallation is needed and any special dependencies are bundled within the app
itself.

2.1 Mac

Assuming that the deployment has been completed properly, the application
you receive should open simply by either double-clicking on the executable
(figure 3) or, equivalently, by moving it into Applications (or a subdirectory
therein) and clicking on it. All required libraries are contained within the
framework of the app, so no special environment is required.

2.2 Windows

FLiPS is not yet deployed on Windows, so no testing has been done. How-
ever, once deployed, the application should work by double-clicking on the
executable, or by adding it to Program Files (or a subfolder therein) and
clicking on it in the Start Menu or tiled desktop. All dependencies and
resources are bundled within the application.
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2.3 Linux/Unix

FLiPS is not yet deployed on Linux or Unix, so no testing has been done.
However, once deployed, the application should work by running the exe-
cutable from the terminal, by double-clicking on the executable in the file
browser (e.g. Nautilus) or by selecting it from the application launcher in
the particular Linux flavour you are running. All dependencies and resources
are bundled within the application.

2.4 iOS (iPhone)

FLiPS is not yet deployed on iOS, so no testing has been done. However, once
deployed, the application should work by clicking on its icon. All required
dependencies and resources are bundles within the application.

2.5 Android

FLiPS is not yet deployed on Android, so no testing has been done. How-
ever, once deployed, the application should work by clicking on its icon. All
required dependencies and resources are bundles within the application.

3 Making a Prediction

FLiPS has been created to allow a prediction to be made very easily.

3.1 How to make a prediction

FLiPS has two tables: one for the mechanical properties of the material and
another for the test conditions (figure 4). Simple entering values for each
input and pressing the “Predict” button gives predictions for all three load-
ing geometries (uniaxial, bending and torsional). Pressing “Reset” empties
the tables and predictions. “Quit” safely and efficiently closes the FLiPS
application.

3.2 Radio buttons

The radio buttons at the top of the window allow the user to specify different
units for some inputs.
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3.2.1 Temperature

Temperature may be expressed using the Celsius, Kelvin or Farenheit scales,
with the appropriate well-known conversion performed when the user request
a prediction to convert the temperature to Celsius.

3.2.2 Stress type

The stress may be specified as one of the following:

• Stress amplitude (σmax − σmean)

• Stress range (σmax − σmin)

• Any of the minimum, mean or maximum stress — together with the R
factor ( σmin

σmax
), the stress state is completely defined

3.2.3 Toughness

Toughness may be expressed as a Charpy impact energy in J cm−2 or as a
fracture toughness in MPam

1/2. If fracture toughness, Cfract, is selected, the
Ralf-Novak-Barsom correlation (equation 8) is used to convert to Charpy
toughness, CCharpy.

CCharpy = σy

(

0.2×
(

Cfract.

σy

)2

+ 0.05

)

(8)

3.3 Source Data

Predictions made using FLiPS will be much more accurate if made using
input data that is similar to many source data. The best uncertainty achieved
when predicting fatigue life during testing was a factor of approximately four.
Using input data which do not correspond to any source data can easily
lead to uncertainties of the order of a factor of one thousand. It is therefore
essential that the availability of source data is considered when deciding upon
input for predictions. The source data used are presented in the following
subsections. It should be noted that while uniaxial loading had different
values of all variables, torsional and 4-point bending fatigue — for which
there were fewer source data — do not account for some variables. These
will be detailed in the relevant subsections.
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3.3.1 Uniaxial Loading

The ANNs that predict fatigue life under uniaxial loading are able to accept
nine out of the ten inputs, as the source data contained variations in each
variable except stress concentration factor,Kt. All of the source data uniaxial
fatigue was taken from experiments where the sample was not notched, i.e.
the stress concentration factor, Kt = 1.0, so no account is taken of stress
concentration when predicting the uniaxial fatigue life.

A statistical breakdown of the source data for the uniaxial fatigue ANN
is given in table 1. Histograms for each variable are given in figures 5–14.

3.3.2 Torsional loading

For the ANN to predict fatigue life under torsional loading, all source data
were taken from experiments performed at ambient temperature and without
any notching in the samples, i.e. a stress concentration factor, Kt = 1.0 and
an R = −1.0. Therefore, none of temperature, stress concentration factor
and r are accounted for when making predictions.

A statistical breakdown of the source data for the torsional fatigue ANN
is given in table 2. Histograms for each variable are given in figures 15–22.

3.3.3 4-point Bending

For the ANN to predict fatigue life under four point bending, all source data
were taken from experiments performed at ambient temperature and without
any notching in the samples, i.e. a stress concentration factor, Kt = 1.0 and
an R = −1.0. Therefore, none of temperature, stress concentration factor
and r are accounted for when making predictions.

A statistical breakdown of the source data for the torsional fatigue ANN
is given in table 3. Histograms for each variable are given in figures 23–31.

4 Proposed Future Developments

As of March 30, 2017, FLiPS v1.1 has only been deployed on Mac OS. The
next planned deployments are for Windows and Android, followed by Linux
and, eventually, iOS.

In parallel to deployment, uncertainties in predictions will be calculated
by extracting the necessary data from the original ANNs and writing them
into the code, along with the necessary calculations.

7



Variable Mean St. dev. Mode Lower bound Lower Quartile Median Upper quartile Upper bound

Yield stress /MPa 983.3 328.8 824 320 824 908 1094 1968
Charpy toughness / J cm−2 93.8 71.5 32.0 4.6 35.8 56.0 150.0 305.0
Elongation (%) 17.2 7.3 18.0 0.5 13.0 18.0 21.0 41.0
Reduction of area (%) 51.5 16.6 64 0 45 54 64 74
UTS /MPa 1124.2 378.4 906 457 906 978 1353 2128
Temperature /℃ 21.6 15.3 20 20 20 20 20 180
Loading frequency /Hz 3333.6 7316.3 140 1 120 140 140 20000
Stress amplitude /MPa 535.0 187.0 560 90 400 550 640 1260
Effective R factor 84.7 178.3 -1.0 -1.0 -1.0 -1.0 0.3 730.0

log10 (fatigue life) 6.0 1.1 5.3 3.8 5.2 5.8 6.8 9.9

Table 1: Summary of training data for the uniaxial fatigue ANN.
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Variable Mean St. dev. Mode Lower bound Lower Quartile Median Upper quartile Upper bound

Yield stress /MPa 786.3 210.7 718 320 633 789 914 1636
Charpy toughness / J cm−2 160.7 53.2 143 15 126 163 195 311
Elongation (%) 21.3 4.8 20.0 10 18 21 24 40
Reduction of area (%) 63.4 9.0 64 5 61 64 68 74
UTS /MPa 903.6 191.0 837 473 790 897 988 1756
Loading frequency /Hz 36.3 6.7 33 33 33 33 33 50
Stress amplitude /MPa 349.1 69.3 350 140 310 350 390 700

log10 (fatigue life) 5.7 0.7 6.1 4.0 5.2 5.6 6.1 8.0

Table 2: Summary of training data for the torsional fatigue ANN.
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Variable Mean St. dev. Mode Lower bound Lower Quartile Median Upper quartile Upper bound

Yield stress /MPa 861.1 295.4 894 242 654 827 996 2466.7
Charpy toughness / J cm−2 139.1 70.2 134 3.4 100 149 190 311
Elongation (%) 19.2 8.5 21 0.2 17.0 20.0 23.0 68.0
UTS /MPa 979.7 279.8 1088 455 801 924 1088 2168
Reduction of area (%) 57.0 20.7 0 0 59 64 67 93
Loading frequency /Hz 188.3 1640.8 50 30 50 50 50 20000
Stress amplitude /MPa 584.3 184.6 600 40 470 560 640 1410
Stress concentration factor 1.0 0.2 1.0 1.0 1.0 1.0 1.0 3.0

log10 (fatigue life) 5.7 0.8 5.0 3.5 5.1 5.5 6.0 10.0

Table 3: Summary of training data for the four-point bending fatigue ANN.
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Figure 3: The FLiPS executable in a directory. Double-clicking on it will
launch FLiPS.
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Mechanical properties

Predictions appear here

Test conditions

Figure 4: FLiPS window. The top table is for the mechanical properties of
the materials being considered, the bottom table contains the test conditions.
The three buttons at the bottom control the program.
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Figure 5: Distribution of yield stresses in the input data for training of the
uniaxial fatigue life artificial neural network.
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Figure 6: Distribution of Charpy impact toughness in the input data for
training of the uniaxial fatigue life artificial neural network.
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Figure 7: Distribution of elongation in the input data for training of the
uniaxial fatigue life artificial neural network.
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Figure 8: Distribution of reduction of areas in the input data for training of
the uniaxial fatigue life artificial neural network.

17



Ultimate tensile strength /MPa
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Figure 9: Distribution of ultimate tensile stresses in the input data for train-
ing of the uniaxial fatigue life artificial neural network.
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Test temperature / ◦C
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Figure 10: Distribution of test temperatures in the input data for training
of the uniaxial fatigue life artificial neural network.
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Figure 11: Distribution of test frequencies used in the training of the artificial
neural network of fatigue life under uniaxial loading. The various plots show
different parts of the range of frequencies used.
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Stress amplitude /MPa
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Figure 12: Distribution of stress amplitudes in the input data for training of
the uniaxial fatigue life artificial neural network.
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Figure 13: Distribution of the effective R factor of the assessed fatigue life,
log10 (Nf), in the input data for training of the uniaxial fatigue life artificial
neural network.

22



log10(number of cycles to failure)

N
u
m
b
er

of
in
p
u
ts

4 5 6 7 8 9 10

0

50

100

150

200

250

300

Figure 14: Distribution of the (decadic) logarithm of the assessed fatigue life,
log10 (Nf), in the input data for training of the uniaxial fatigue life artificial
neural network.
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Figure 15: Distribution of yield stresses in the input data for training of the
torsional fatigue life artificial neural network.
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Charpy impact toughness / J cm−2
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Figure 16: Distribution of Charpy impact toughness in the input data for
training of the torsional fatigue life artificial neural network.
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Figure 17: Distribution of elongation in the input data for training of the
torsional fatigue life artificial neural network.
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Reduction of Area (%)
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Figure 18: Distribution of reduction of areas in the input data for training
of the torsional fatigue life artificial neural network.
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Figure 19: Distribution of ultimate tensile stresses in the input data for
training of the torsional fatigue life artificial neural network.
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Test frequency /Hz
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Figure 20: Distribution of test frequencies used in the training of the artificial
neural network of fatigue life under torsional loading.

Stress amplitude /MPa

N
u
m
b
er

of
in
p
u
ts

0 200 400 600 800 1000

0

50

100

150

200

250

300

Figure 21: Distribution of stress amplitudes in the input data for training of
the torsional fatigue life artificial neural network.
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Figure 22: Distribution of the (decadic) logarithm of the assessed fatigue life,
log10 (Nf), in the input data for training of the torsional fatigue life artificial
neural network.
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Figure 23: Distribution of yield stresses in the input data for training of the
four-point bending fatigue life artificial neural network.
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Charpy impact toughness / J cm−2
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Figure 24: Distribution of Charpy impact toughness in the input data for
training of the four-point bending fatigue life artificial neural network.
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Figure 25: Distribution of elongation in the input data for training of the
four-point bending fatigue life artificial neural network.
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Ultimate tensile strength /MPa
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Figure 26: Distribution of ultimate tensile stresses in the input data for
training of the four-point bending fatigue life artificial neural network.
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Figure 27: Distribution of reduction of areas in the input data for training
of the four-point bending fatigue life artificial neural network.
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Figure 28: Distribution of test frequencies used in the training of the artificial
neural network of fatigue life under four-point bending loading.
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Figure 29: Distribution of stress amplitudes in the input data for training of
the four-point bending fatigue life artificial neural network.
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Stress concentration factor
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Figure 30: Distribution of stress concentration factors used in the training of
the artificial neural network of fatigue life under four-point bending loading.

log10(number of cycles to failure)

N
u
m
b
er

of
in
p
u
ts

3 4 5 6 7 8 9 10

0

200

400

600

800

1000

Figure 31: Distribution of the (decadic) logarithm of the assessed fatigue life,
log10 (Nf), in the input data for training of the four-point bending fatigue life
artificial neural network.
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