Gareadme.txt: User manual for GA program (in C)

A set of input variables (eg. Cr, Ni, Si, temperature etc), each with individual values, equate to an output value. This could be the elongation to failure, for example. Each of the inputs are called “genes”, but a collection of them which form an output are called “chromosomes”.

It is important to compile the program after all changes made using cc –lm –g genetic.c
Contents

A. Inserting your committee of neural network models
B. Changing the number of inputs allowed to vary
C. Changing the MINMAX file
D. Boundary of random number generation
E. Adjusting the number of populations and the size of a population
F. Adjusting the number of chromosomes that are reproduced, mutated and deleted

G. Adjusting the crossover frequency of genes between populations
H. Adjusting the mutation rate after each generation
I. Altering the destination of the output file for normalised predictions and scores
J. Changing the number of generations
K. Changing the desired target and accuracy
L. Wanting the GA process to stop if the target and accuracy conditions are met
M. Altering the number of chromosomes per population within the final output of normalised predictions
N. Unnormalising output data
A. Inserting your committee of neural network models

<Back to top>
Locations concerned:

Part (a)
net (p,i)
Part (b)
Top of program script

Part (a)

In the subroutine, look for the first generate44 command. The script concerning the first model should look like the following:

sprintf(s, "generate44 ./input/spec1.t1 3 ./input/_wc5f ./input/_wc5f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 1");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res2,&err2);

 printf("res2 err2 %f %f\n",res2,err2);

 printf("Indices %d %d\n",p,i);

 fclose(nmin2);

 }

Lines 1 (which takes over three lines in the example above), 7 and 8 are of most concern.

First, line 1. There are 3 files, which are required:

spec.t1: focusing on generate44 ./input/spec1.t1

spec.t1 is a dynamic file, created by spec.ex/spec.exe, which contains information about the module and the number of data items being supplied. It is read by the program generate44. It is located in the root directory of the neural network model. However, it requires a small modification.

The file is located in the root directory of the neural network model. Look for a set of lines like the following:

Data_files(inputs_targets)
inran.x outran.x
LINE A
Number_data

2030

LINE B
Train_from_1_to_this

2030

LINE C
Test_set_1

1
2030

LINE D
Test_set_2

1
2030

LINE E
Line A refers to two files, inran.x and outran.x. The first file relates to the normalised inputs going into the GA. This reference needs to be changed to norm_test.in. The second file, outran.x, is a normalised output file that was created when developing the model. It is accessed by generate44, but the location needs to be changed, which is located in subdirectory /input.
Line B: 2030 refers to the number of data lines that the neural network was trained with. This needs to be changed to 1.

Likewise on lines C, D and E, the number 2030 needs to be changed to 1 in each case.

The file should then be saved and renamed as spec1.t1 in the same directory. Hence on line 1 (“generate44….), the reference should be made to the exact location of spec1.t1.
Complexity of model: focusing on …../spec1.t1 3
The number immediately after spec1.t1 on line 1 relates to the complexity of the model. For example, if the file _wn3f was used, the number 14 would be stated.

Quoting neural network model: focusing on …./input/_wc5f ./input/_wc5f.lu> /dev/null");

Neural network models files called _w*f contain the weights file for the model and *.lu contains information for calculating the size of the error bars for the model, both of which are located in the subdirectory /input.
Recording result and error statements: focusing on:

fscanf(nmin2,"%f %f",&res2,&err2);

printf("res2 err2 %f %f\n",res2,err2);

Lines 7 and 8 refer to the prediction and error generated for a given set of inputs. The first model should use res2 and err2. A second model should then use res3 err3, such as _wd1f, would be quoted:

sprintf(s, "generate44 ./input/spec1.t1 4 ./input/_wd1f ./input/_wd1f.lu> /dev/null");

 system(s);

 if ((nmin2 = fopen("_out","r")) == NULL) {

 printf ("Can't read _out stage 1");

 exit(1);

 } else {

 fscanf(nmin2,"%f %f",&res3,&err3);

 printf("res2 err2 %f %f\n",res3,err3);

 printf("Indices %d %d\n",p,i);

 fclose(nmin2);

 }

This should be repeated for each committee model member. Subsequent models should then use res3 err3, res4 err4 etc. on lines 7 and 8 in each set. Ensure that if there any excess sets of lines for models that do not exist, they need to be commented out.

Ensure that all res* and err* files are declared floated variables at the top of the subroutine. For example:

float res2,err2,res3,err3,res4,err4,res5,err5

Averaging the results and errors

Now look for the line result[p][i]. This line should include all res* files used and then be divided by the number of files quoted. For example:

result[p][i] = ((res2+res3+res4+res5+res6+res7)/6);

Next go down to err_a, which should look like:

err_a = pow ((res2-target.p[0]),2);

where err_a relates to an error for the first neural network model, res2 is the prediction and target.p[0] is the target value. err_* should be repeated for every model used i.e. 2nd model = err_b, 3rd = err_c etc.

Now go to error[p][i], which averages the sum of the test error and the prediction uncertainty. An example is:

error[p][i] = sqrt (((err_1a)/6)+((err_a + err_b + err_c + err_d + err_e + err_f)/6));

where 6 in both cases relates the number of committee models used and all err_* files should be included in the second half of this line.

Part (b)

At the top of the program, there is a reference to NUM, whose value should be equal to the number of variables of the neural network. For example, if there are 17 variables:

#define NUM 17
B. Changing the number of inputs allowed to vary

<Back to top>
Locations concerned:

Part (a)

Top of program script
Part (b)

net (p,i)
Part (c)

main ()

If certain inputs are to be fixed, their locations within the model must be known. For example:

Carbon as the 1st variable = 0

Coiling temperature as the 17th variable = 16
Part (a)

Go to the line containing #define SIZE at the top of the program. This relates to the number of inputs to be put through the optimisation process. If all variables are to put through the optimisation process, then SIZE should be the same as NUM. But if some inputs are to be fixed, then SIZE needs to be reduced. For example, if there are 17 variables and 2 are to be fixed:

#define NUM 17
#define SIZE 15
Part (b)

Look for the lines such as:

for (j=0;j<SIZE+2;j++) {

 if (j != 5 && j !=6) {

fprintf(nmin,"%f ",w1.p[l]);

++l;

 } else {

If all variables are to be varied:

The first line should be:

for (j=0;j<SIZE;j++) {

The 2nd and 4th line should be commented out.

The next set of lines to look for is:

if (j==0){

fprintf(nmin,"%f ",CAR);

}

All sets of lines containing commands such as these should also be commented out. However, ensure that the number of brackets that follows the last set of lines, such as these, is only one, to close the loop.

If 3 variables are to be fixed:

The first line should be:

for (j=0;j<SIZE+3;j++) {

 (note: SIZE+3 should be equal to NUM, as defined at the top of the program)

On the 2nd line, if variables 5th, 6th and 7th are to be fixed:

if (j != 4 && j !=5 && j != 6) {

The next set of lines to look for is:

if (j==4){

fprintf(nmin,"%f ",SIL);

}

On the first line, if variable 5 is the first to be fixed, the value should be 4 instead.

On the second line, S is a fixed value that is defined (this can be done at the top of the program, using #define SUL 0.1 to fix S at a normalised value of 0.1, as defined by the MINMAX file).

This set of lines should be repeated for each fixed variable, but also ensuring that any unwanted surplus sets be commented out.

Part (c)

Part (b) should be repeated in main(), where the same exact script can be found. Here, the final output is written to an output file, except that k is used instead of j. To help identify the start of this process in main (), it should look like the following

for (k=0;k<SIZE+3;k++) {

C. Changing the MINMAX file

<Back to top>
Locations concerned:

Part (a)

 make_initial_population() subroutine

Part (b)

make_next_generation() subroutine

Part (c)

treatout.c in subdirectory /unnormalise
Part (a)

Look for the line that begins with ifp=fopen……

An example is:

ifp=fopen("./input/MINMAX","r");
Where “r” relates to reading the file, which should be left unchanged.

Change the reference to the location of the MINMAX file (in bold) for the appropriate model.

Part (b)

The same is true for the make_next_generation() subroutine.

Part (c)
Open the file treatout.c in subdirectory /unnormalise of the GA program.

Look for the line:

strcpy(minmax_file,"../input/MINMAX");

Change the MINMAX reference (in bold) according to the appropriate model, located in the root directory of the neural network model.

Compile treatout.c (the unnormalising program) the program using cc –lm –g treatout.c.

D. Boundary of random number generation

<Back to top>
Locations concerned:

Part (a)
make_initial_population() subroutine

Part (b)
make_next_generation() subroutine

Part (a)
There are three lines which may look like the following:

pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) * 2;

while (pop[p][i][j] < (-(min[j]/(max[j]-min[j])+0.5))) {

 pop[p][i][j] = ((random()&1048575) / 1000000.0 - 0.5) * 2;

}

The second line ensures that negative values are not generated, which should be left unchanged.

The value 1000000 is the value on the 1st and 3rd lines, which control the boundary.

For example:

1000000
= ±1

100000
= ±10

10000

= ±100

Part (b)
The same is true for the make_next_generation() subroutine.

E. Adjusting the number of populations and the size of a population

<Back to top>
Location concerned: top of program
Look for a line such as #define POPS 4, where 4 relates to 4 populations. Change the number to the desired number of populations.

Look for a line such as #define MAXPOP 20, where 20 relates to 20 chromosome members within a population. Change the number to the desired number of chromosomes.

F. Adjusting the number of chromosomes that are reproduced, mutated and deleted

<Back to top>
Location concerned: top of program
BESTPOP = Number of chromosomes that are kept from the previous generation and kept untouched because they are the closest to the target value requested.

SELPOP = The value put here will form part of a subtraction operation, (SELPOP – BESTPOP), where the answer relates to the number of chromosomes underneath the best populations to undergo random exchanges of genes within their own population.

NEWPOP = The value put here will form part of a subtraction operation, (NEWPOP – SELPOP), where the answer relates to the number of chromosomes underneath the previous set to be deleted and replaced with new random inputs, as at the start of the optimisation process.

MUT1 = The value put here will form part of a subtraction operation, (MUT1–NEWPOP), where the answer relates to the number of chromosomes underneath the previous set to be severely mutated.

G. Adjusting the crossover frequency of genes between populations

<Back to top>
Location concerned: top of program

Look for a line such as #define MIXGEN 10, where 10 relates to crossover frequency of genes between different populations every 10 generations. Change the number to the desired crossover frequency between populations.

H. Adjusting the mutation rate after each generation

<Back to top>
Location concerned:

make_next_generation() subroutine

There are three lines which may look like the following:

dev = 1 + ((irand(2000) - 1000)/ 5000);

j=irand(SIZE);

while (dev < (-(min[j]/(max[j]-min[j])+0.5))) {

 dev = 1 + ((irand(2000) - 1000)/ 5000);

}

The second line selects a gene at random for the chromosomes that the mutation affects, and the third line ensures that negative values are not generated, both of which should be left unchanged.

The number 5000 is the value on the 1st and 3rd lines controls the mutation.

5000 is the program default.

However, increasing the number reduces the mutation rate, and decreasing the number increases the mutation rate. For example:

50000
=
x0.1 the mutation rate from default

500
=
x10 the mutation rate from default

I. Altering the destination of the output file for normalised predictions and scores

<Back to top>
Location concerned: main ()

Normalised predictions:

Look for the line that begins with fb=fopen……

An example is:

fb=fopen("./unnormalise/nn-output_b","a+");
Where “a+” relates to writing and appending the file. Change the file reference (in bold) to define the new location of the file.

Now open the file treatout.c in subdirectory /unnormalise
Look for the line:

strcpy(data_file,"nn-output_b");

Change the reference (in bold) according to new location of the normalised data file, as stated above.

Compile the program using cc –lm –g treatout.c.

Normalised scores:

Look for the line that begins with fscore=fopen……

An example is:

fscore=fopen("../gares/st2/score02_298","w");

Where “w” relates to writing the file, which should be left unchanged.

Change the reference (in bold) to the location of the score file to a desired location.

J. Changing the number of generations

<Back to top>
Location concerned: top of program
Look for a line such as #define SESSIONS 1000, where 1000 relates to 1000 generations. Change the number to the desired number of generations.

K. Changing the desired target and accuracy

<Back to top>
First, create a file called nn-input if one does not exist in the root directory of the GA program. Open the file, of which there should be two lines of information. For example:

0.4

0.1

0.4 relates to the normalised target value, as defined by the MINMAX file.

0.1 relates to a 10% accuracy tolerance.

Save the file and exit.

Secondly, change variables in the genetic.c file.

#define TARGET_UNNORMAL

35.0

#define MAX_UNNORMAL

50.0

#define MIN_UNNORMAL

14.0

#define TARGET_PERCENT_PERMIT

0.1

#define UNCERTAINTY_PERCENT_PERMIT
0.15

TARGET_UNNORMAL relates to the un-normalised target value MAX_UNNORMAL is the maximum value of target, MIN_UNNORMAL is the minimum value of target, TARGET_PERCENT_PERMIT is for the permitted range for the output and UNCERTAINTY_PERCENT_PERMIT is for the permitted range for the uncertainty of output.
L. Wanting the GA process to stop if the target and accuracy conditions are met

<Back to top>
Location concerned: main ()
Look for the set of lines:

if (score[p][0] > target.p[1]) {

printf ("Target error was %f and error is %f", target.p[1], score[p][0]);

done = 1;

 } else {

printf("Done all !!\n");

 }

If they are commented out, uncomment them. However, if the user desires the GA process to continue up to the set number of generations, then the set of lines should be commented out of the program.

M. Altering the number of chromosomes per population within the final output of normalised predictions

<Back to top>
Location concerned: main ()
There are three lines, which may look like the following within main ():

for (i=0;i<POPS;i++) {

for (j=0;j<BESTPOP;j++) {

 apply (i,j);

The first line ensures that all populations are included, which should be left unchanged.

The third line ensures that every gene value is applied to printing the output, which should also be left unchanged.

The second line, where BESTPOP is printed, relates to the top ranked chromosomes being included in the output file. Instead of adjusting the #define BESTPOP value at the top of the program, simply change BESTPOP on the second line here to an integer. However, the maximum value it could be is MAXPOP, which is the number of chromosomes in a population. If this is desired, then simply replace BESTPOP with MAXPOP.

N. Unnormalising output data

<Back to top>
Once the GA has finished its process, goto the subdirectory /unnormalise within the GA directory.

Type a.out <number of lines> <(number of inputs)+(prediction)+ (prediction +error)>

The number of lines can be obtained from the unnormalise/nn-output_b file.
The second value is easy to calculate. For example, if there are 19 variables, the required value would be 21, as there is only one prediction and error value per chromosome.

For example, if the command is a.out 12 19 then the number of line of nn-output_b is 12, and the number of input variables is 17.
