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MODELLING OF MATERIALS (1)

Answer six parts from Section A (i.e. Question 1), which carries one–third
of the credit for this paper.

Two questions should be answered from Section B; these two questions carry
one–third of the credit for this paper.

One question should be answered from Section C; this carries one–third of
the credit for this paper.

Write on one side of the paper only.

The answer to each question must be tied up separately, with its own
cover-sheet. All the parts of Question 1 should be tied together.

Write the relevant question number in the square labelled ‘Section’ on each
cover–sheet. Also, on each cover–sheet, list the numbers of all questions at-
tempted from this paper.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you
may do so by the Invigilator
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SECTION A

1. (a) Draw a projection along the z–axis of the crystal structure of GaN
which has a cubic–F lattice with a motif of Ga at 0,0,0 and N at
1
4 ,

1
4 ,

1
4 .

(b) Explain, using thermodynamic terms, why a material which is atom-
ically ordered at low temperatures tends to disorder as the temper-
ature is increased.

(c) Describe why it is important to establish a synergy between theory,
modelling and experiment in materials science. Explain the meaning
of the terms materials by design, ab initio materials–science and
intelligent processing of materials?

(d) By appealing to the Ziman model (i.e. nearly free electron model),
provide a qualitative explanation for the origin of band gaps in the
electronic structure of materials.

(e) The trace of a matrix is defined as the sum of the diagonal elements;
that is

TrA =
∑

i

Aii.

Write a FORTRAN function which takes two arguments which are
3 × 3 real arrays representing matrices, and returns a real result
which is the trace of their product.

(f) State why, for an oxidation reaction such as the one given below, the
standard free energy change increases as temperature is increased:

M(s) + O2(g) = MO2(s)

(g) Given that the grand partition function gives us a complete thermo-
dynamic description of a system, why is computer modelling at the
atomistic level useful to a materials scientist?

(h) Define mesoscale, and describe an example of a commonly occurring
mesoscopic phenomenon.

(i) During processing, a polymer melt with an average molecular weight
of 104 g mol−1 is forced through a cylindrical die. Under these condi-
tions, the Deborah number is around 0.1. Explain the consequences
of tripling the molecular weight of the polymer.

(j) Describe three experimental methods which may be used in the de-
termination of equilibrium phase diagrams.
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SECTION B

2. Derive the truncated Taylor series expansion giving the central difference
approximation for the second spatial derivative of a dependent variable
such as temperature. By using this expression, and a forward difference
expression for the time derivative, show that the one-dimensional Fourier
equation may be represented in finite difference formulation as the fol-
lowing explicit recurrence relation:

Ti,j+1 = Ti,j +
α∆t

∆x2
(Ti+1,j − 2Ti,j + Ti−1,j)

where Ti,j is the temperature of element i after a time period j∆t, ∆x is
the element size and α is the thermal diffusivity.

Show that using such an explicit scheme leads to the requirement that

∆t ≤ ∆x2

2α

if numerical instability is to be avoided. Give a physical interpretation of
how such instability arises if this condition is not satisfied.

3. What is the importance of the thermal history in the DC casting and
extrusion of aluminium? In each case explain why numerical methods
are useful in estimating the thermal history.

A finite element analysis of a Jominy end–quench test for steel used the
following mesh, properties and boundary conditions:

(i) 10 linear elements of equal size;
(ii) constant thermal properties;

(iii) perfect insulation on the sides and the end remote from the quench;
(iv) perfect heat transfer on the quenched end.

Summarise the improvements which could be made to this model, in order
to obtain greater accuracy in the prediction of the temperature history.
Explain why it is more important to predict the cooling history accurately
between 800 and 500 ◦C than from 350 ◦C to room temperature.
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4. Give three examples of how nucleation behaviour can influence the mi-
crostructure or properties of materials.

Explain the concept of critical nucleation size and show that for a spher-
ical nucleus, the critical radius r∗ is given by

r∗ = 2σ/∆GV

where σ is the energy per unit area of the solid–liquid interface and ∆GV
is the free energy change driving the transformation. Distinguish be-
tween homogeneous and heterogeneous nucleation; explain qualitatively
why heterogeneous nucleation has a smaller activation barrier than homo-
geneous nucleation and why it is mostly dominant in industrial situations.
What are the problems in quantitative modelling of nucleation? Which
modelling methods may be adopted?

5. Describe the different types of bonded (i.e. intramolecular) terms which
are used in the generic force field DREIDING. Explain how Molecular
Dynamics (MD) simulations of macromolecules can be accelerated by
the use of multiple time step algorithms (MTA) for the bonded forces.

The dynamics of a graphene sheet (i.e. a single layer of hexagonally
bonded sp2 hybridised carbon) consisting of N independent atoms with
2D periodic boundary conditions is to be studied. If the bonded forces
are evaluated using DREIDING, write down the number of distinguish-
able terms of each type as a function of N . Assuming that the amount
of processor time required for the force calculations is proportional to
the total number of bonded terms, calculate the time saving obtained by
using a MTA with ∆Ttorsion = 5∆Tbend = 50∆Tstretch.
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SECTION C

6. Given a binary solution of N atoms of which xN are B atoms and the
remainder A atoms, derive expressions giving the numbers of AA, BB,
AB and BA nearest neighbours.

Distinguish between an ideal, a regular and a quasichemical solution ther-
modynamic model.

Explain, in the context of binary solutions, what is meant by the term
‘chemical potential’. Hence justify the fact that the common tangent
construction, on a free energy versus concentration plot, gives the equi-
librium compositions of the phases.

Show how the diffusion coefficient can be written in terms of the chem-
ical potential gradient rather than the concentration gradient. In what
circumstances might the diffusion flux oppose the concentration gradient?

7. State the basic assumptions underlying the free electron model.

Using wave mechanics, show that free electrons contained in a three–
dimensional box have quantised energies.

Derive the following expression for the Fermi energy of the free electrons:

EF =
h̄2

2m
(3π2nc)

2
3

where h̄ is Plancks constant, m is the mass of an electron and nc is the
number of free electrons per unit volume.

Estimate the Fermi energy of copper assuming that it is monovalent and
can be adequately described by the free electron model. Calculate the
wavelength and velocity of the electrons which have this energy.

Explain why the free electron model works quite well for metals but fails
for semiconductors and insulators. Give an example of a property of a
semiconductor which cannot be predicted using the model.

Describe how the free electron energies are affected by introducing a
periodic crystal potential into the model. Sketch the form of the electron
energy spectrum near a Brillouin zone boundary for free electrons and
for Bloch electrons.

h̄ = 1.054× 10−34 J s; m = 9.109× 10−31 kg;

lattice constant of Cu (face–centred cubic lattice) is 0.362 nm


