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MODELLING OF MATERIALS (1)

Answer six parts from Section A (i.e. Question 1), which carries one-third
of the credit for this paper.

Two questions should be answered from Section B; these two questions carry
one-third of the credit for this paper.

One question should be answered from Section C; this carries one-third of
the credit for this paper.

Write on one side of the paper only.

The answer to each question must be tied up separately, with its own
cover-sheet. All the parts of Question 1 should be tied together.

Write the relevant question number in the square labelled ‘Section’ on each
cover-sheet. Also, on each cover-sheet, list the numbers of all questions at-
tempted from this paper.

For questions divided into parts, the approximate fraction of credit allocated
to each part is indicated by the percentages in square brackets

You may not start to read the questions printed on
the subsequent pages of this question paper until
instructed that you may do so by the Invigilator
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SECTION A

1. (a) Define the terms lattice, motif and crystal structure. Draw a pro-
jection along the z–axis of the crystal structure of diamond, which
has a cubic–F lattice with a motif of carbon atoms at 0,0,0 and at
1
4 , 1

4 , 1
4 .

(b) What are the factors which contribute to the heat capacity of a
metal? Explain in particular the role of the electrons. What addi-
tional factors contribute to the heat capacity of a polymer?

(c) What is meant by the terms “deterministic” and “stochastic” when
referring to a computer model? Describe the distinguishing features
of each class of model, and give an example of each.

(d) List and briefly describe some of the experimental methods that can
be used to determine a binary phase diagram.

(e) Data can be passed between a FORTRAN subprogram and the pro-
gram or subprogram which calls it. Two mechanisms are available:
parameters, and common blocks. Discuss briefly the advantages and
disadvantages of each mechanism.

(f) Describe an experiment which proves that diffusion in the solid state
occurs by a vacancy mechanism.

(g) Briefly outline the Metropolis Monte Carlo algorithm, and give three
examples of its use in materials modelling.

(h) What is the purpose of coarse-graining as applied to a model of an
atomistic system?

(i) Give three advantages of liquid crystalline polymers (LCPs) over
conventional polymers from the point of view of their processing.
What disadvantages do LCPs have for the manufacture of goods?

(j) Explain what is meant by the terms displacive and reconstructive
phase transformations, describing chemical compositions and strains
associated with each mechanism.
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SECTION B

2. Describe how to avoid overfitting when modelling a set of data using
non-linear functions.

[30%]

Describe the use of the hyperbolic tangent function in neural network
applications.

[30%]

The fitting uncertainty σy associated with a neural network with two
input variables (x = (x1 x2 )) and one output (y) is described by the
following variance-covariance matrix:

V =
(
2.7× 10−5 0

0 1.8× 10−4

)

What is the significance of the fact that the off-diagonal terms in this
matrix are zero?

[10%]

Calculate the value of σy for x = ( 1 3 )
[30%]

3. Describe briefly the microstructural characteristics of normal grain
growth. What is the thermodynamic reason for grain growth? What
is the driving force for local grain boundary migration?

[20%]

Show that for a grain structure evolving from a very small initial mean
diameter, D0, the mean diameter D varies with time t according to the
equation:

D ∝ t
1
2

[20%]

What are the disadvantages of this analytical approach?
[20%]

Computer simulations of grain growth are commonly based on a vertex
model, a Monte Carlo model or a front-tracking model. Describe briefly
the essential features of these models and compare their merits.

[40%]

[TURN OVER
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4. Describe briefly how finite element analysis (FEA) may be used to model
heat diffusion in solids.

[10%]

A finite element analysis of the Jominy end-quench test has been conducted
using the following mesh, properties and boundary conditions:

(i) 20 linear elements of equal size;
(ii) bar of length 120 mm with constant thermal properties;
(iii) initial temperature T1 = 850◦C throughout;
(iv) ambient temperature T0 = 20◦C;
(v) air convection on the sides and the end remote from the quench;
(vi) imperfect heat transfer for a water quench on the quenched end.

The table below provides selected output values from the analysis.

Distance from quenched Time from start of Temperature

end, x (mm) quench, t (s) T (◦C)

10 20 352

10 100 143

10 500 37

10 1000 22

65 100 595

65 500 115

65 1000 30

An analytical solution for the end-quenching of a semi-infinite steel bar, with
perfect heat transfer, is given by:

T (x, t)− T0

T1 − T0

= erf(
x

2
√

at
)

where a is the thermal diffusivity, and erf(x) is the error function. It may
be assumed that erf(x) ∼= x for x < 0.75.

Calculate the temperature predicted by the analytical solution for the posi-
tions and times given in the table, if the thermal diffusivity of the steel is
1.91× 10−5 m2 s−1. Plot the cooling curves for x = 10 mm and x = 65 mm,
in each case showing the numerical and analytical solution.

[50%]
What are the main reasons for the discrepancies between the two solutions?

[40%]
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5. One method for computing the molecular dynamics (MD) of a system of
atomic particles is the Verlet algorithm in which the atomic positions are
evolved in time according to the equation:

r(t +∆t) = 2r(t)− r(t −∆t) + ∆t2a(t)

where r(t) and a(t) are the positions and accelerations of the atoms as a
function of time, and ∆t is the time step.

By considering the Taylor series of r(t + ∆t) and r(t − ∆t), show that the
largest error made by using the above expression to calculate the atomic
positions is proportional to ∆t4.

[30%]

Given that there are many alternative algorithms whose numerical precision
is higher than ∆t4, explain why the Verlet algorithm is often used in MD
simulations.

[30%]

Discuss the factors which limit the time step length in molecular dynamics
simulations of simple fluids and macromolecules. Describe how these limits
can be exceeded for macromolecules such as polymers?

[40%]

[TURN OVER
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SECTION C

6. Distinguish between the terms mechanical mixture and an ideal solution,
explaining why the latter has a lower free energy than the former.

[20%]

Explain the process of mechanical alloying, which is used to produce a metal-
lic solid solution beginning with a mechanical mixture of elemental powders.

[20%]

The configurational entropy of mixing in an ideal solution made of compo-
nents A and B is given by:

∆SM = −kN [(1− x) ln{1− x}+ x ln{x}]

where k is the Boltzmann constant, x is the mole fraction of B and N is
Avogadro’s number.

Derive ∆GM , the free energy of mixing for this ideal solution, and sketch its
variation with the concentration x.

[20%]

Show that:
∂∆GM

∂x
= kTN ln

{
x

1− x

}

and that the slope ∂∆GM/∂x tends to −∞ or +∞ at x = 0 and x = 1.
[20%]

Why might this result be a mathematical artifact, i.e. why are these slopes
expected to be finite in practice?

[10%]

How might the ideal solution model be modified to take account of any
enthalpy of mixing?

[10%]
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7. In a perfect silicon crystal all of the atoms are covalently bonded, and tetrahe-
drally co-ordinated. Why is this is a stable configuration for silicon? Where
would you expect the valence charge density to be concentrated? (You may
find it useful to note that silicon has the electronic configuration [Ne]3s23p2,
where [Ne] denotes the configuration of neon.)

[20%]

Why would you expect a simple pair potential expansion of the interaction
energy to give a poor description of the material’s properties?

[10%]

For bulk silicon, it is suggested that the interaction energy U , as a function
of atomic separation r, can be expanded as:

U(r) =
∑
ij

U2(r) +
∑
ijk

U3(r)

where i, j and k refer to atoms, with U2 given by:

U2(r) = − A

r6
ij

+
B

r12
ij

and U3 by:

U3(r) =
C(cos(γjik) +

1
3 )

2

(rijrik)3

where A, B, C are positive constants, rij is the distance between atoms i
and j, and γjik is the angle at atom i between its bonds with atoms j and k.

By considering one silicon atom and two of its nearest neighbours, decide
whether U3 is an attractive or repulsive contribution to the total energy.
Calculate the minimum energy bond angle, keeping the bond lengths fixed.
Sketch U3 as a function of bond angle.

[20%]

Calculate the equilibrium bond length, in terms of A, B and C, for a fixed
bond angle. Sketch the variation of the total energy as bond length changes
for the optimal bond angle.

[25%]

Discuss the strengths and weaknesses of using the potential U(r) in a sim-
ulation of bulk silicon, considering both its range of applications and the
computational cost of the calculation. How could it be improved?

[25%]
END OF PAPER


