
 

 

MASTER OF PHILOSOPHY  Modelling of Materials 
 
Examiners’ Solutions to Paper 1 
 
SECTION A 
 
1(a) 
 

 
1(b) 
 
Explanation depends on the result that the number of allowed wave vectors 
in a band equals N, the number of primitive cells in the crystal. Extra credit 
should be given if this result is proved. 
 
[Proof: From free electron theory, the allowed wave vectors in a 1-D box 
of length L is given by 
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i.e. the number of allowed wave vectors is equal to 2n. 
 



 

 

Within the first band, the series terminates at 
a
π± , where a is the lattice 

parameter. Therefore 2 n
L a
π π± = ± . But Na = L, where N is the number of 

primitive cells in the crystal, and thus 2n = N. Hence the number of 
allowed wave vectors is equal to N] 

 
Taking into account the Pauli exclusion principle which says that 2 
electrons can occupy each k-state, then there are 2N allowed electrons per 
band (an even number). Therefore crystals with an even number of valence 
electrons per primitive cell will have full bands. A crystal with full bands 
will be an insulator since an external electric field will not cause current to 
flow. Provided that there is an energy gap, there is no continuous way to 
change the momentum of the electrons if every accessible state is filled. 
Extra credit should be given if it is recognized that there are exceptions to 
this rule when there is band overlap.   
 
Crystals with an odd number of electrons per primitive cell will have half 
filled bands. There are therefore accessible states to facilitate conduction 
and the crystal is a metal. Examples: Na that has 1 electron per primitive 
cell and is a metal. Si that has 8 electrons per primitive cell is an insulator 
(at zero Kelvin). Simple sketches of how the electrons occupy the levels in 
the band are appropriate. 
  
1(c) 
 
A multiscale model couples different models across the length scales. A 
good answer will define the hierarchy of models based on length scale (i.e. 
electronic, atomistic, microstructural and continuum) and note that the 
main idea is to integrate two or more of them. Sketches of length scale 
against discipline or length scale against number of atoms would be 
appropriate. Additional credit could be given for pointing out that models 
on individual length scales are now well established and that multiscale 
modelling is the current challenge in modelling research (the intermediate 
scale problem). 
 
Any example where it would be computationally advantageous to model 
different behaviour on different length scales simultaneously would 
suffice. Example given in lectures was fracture where the tip of the crack is 
modelled atomistically and the long-range strain field is modelled 
elastically. The scale of the models have to be chosen appropriately to 
target the main process that is occurring, e.g. bond breaking or bond 



 

 

stretching. The main idea is to avoid doing detailed microscopic or 
microstructural calculations in regions of the model where it is 
unnecessary, and to account for long-range behaviour with macroscopic 
solutions. The main technical difficulty is making sure that the solutions 
are continuous across the boundaries between different models. 
 
1(d) 
 
A process whose direction can be changed by an infinitesimal alteration in 
the external conditions is called reversible (for example, a frictionless 
piston compressing an ideal gas in a cylinder). By contrast, free energy is 
dissipated in an irreversible process. 
 
A steady-state process is one in which free energy is being dissipated but it 
is possible to define a frame of reference such that the process appears 
stationary. For example, in steady-state diffusion, free energy is being 
dissipated but the concentration profile does not change. 
 
The flux may be written as a function J{X} of the force X using a Taylor 
expansion about X = 0 
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Note that J{0} = 0 since the flux is zero at equilibrium. If the high order 
terms are neglected, then we see that J X∝ . 
 
1(e) 
 

 



 

 

1(f) 
 
The principal differences are that metallic melts are much higher 
temperature and lower viscosity than polymer melts, and consequently the 
stresses applied to the mould during injection moulding are much higher 
than during casting. This necessitates having an extremely durable mould 
with a smooth surface finish. Also, the thermal diffusivity of metals is 
much higher than that of most polymers, and so the cooling phase is 
generally faster for metal casting. Heat conduction from the mould is a 
particular issue for thermoplastic polymers, which do obtain sufficient 
dimensional stability to retain their moulded shape until they are well 
below the melting temperature. Thus, mould designs for injection-moulded 
polymer components tend to avoid containing large contiguous blocks of 
polymer wherever possible. They also tend to avoid having sharp corners 
or narrow channels in which shear-orientation of the polymer chains can 
occur, causing anisotropic swelling and shrinkage during cooling. 
 
1(g) 
 
The SHAKE algorithm can be used to freeze any set of holonomic 
constraints (bond length, bond angle, torsion angle) during a molecular 
dynamics simulation. However, it cannot be used to enforce non-
holonomic constraints (i.e. those which are not a function of the atomic 
coordinates). The method works by introducing fictitious constraint forces 
that act along the bond vectors between each pair of atoms. In the case of a 
diatomic, there are two equal and opposite forces acting along a vector 
connecting the atoms. 
 
The magnitudes of the forces are determined by substituting the standard 
forces (calculated from derivative of potential energy) plus constraint 
forces into the discretised equations of motion for the MD simulation, and 
imposing the constraint that ( ) ( )ij ij ijt t t d+ ∆ = =r r , where rij are the 
positions of the atoms at adjacent points in the trajectory, and dij are the 
bond lengths to be enforced. This leads to a set of simultaneous equations 
that can be recast into a matrix form and solved by inverting the matrix. 
 
For larger molecules, this is very time consuming and so an iterative 
procedure is used (hence the “shaking” of the molecule as each constraint 
is enforced in turn). 
 
 
 



 

 

1(h) 
 
Both Brownian dynamics and DPD, are based on a simple molecular 
dynamics type approach except that in addition is a random ‘kick’ term and 
a dissipative term, in which the energy injected by the ‘kick’ is drained 
away between the events by a damping term proportional to particle 
velocity. 
 
However, in the case of Brownian Dynamics both terms act in relation to 
the rest frame of the simulation, so simulations are diffusive rather than 
hydrodynamic. In the case of DPD, the same forces (random kick and 
damping) are present, but they are applied to the interaction between 
particles and thus there is proper conservation of both linear and angular 
momentum. 
 
DPD can be applied to model short, diblock copolymers by building 
mesoscopic models for the diblocks from DPD beads (each containing 
many atomistic particles) and mapping the conservative interaction 
parameters between the beads onto standard Flory-Huggins theory for the 
homopolymer case. 
 
1(i) 
 
In the phase-field method, the state of the entire microstructure is 
represented continuously by a single variable known as the order 
parameter φ. For example, φ = 1, φ = 0 and 0 < φ < 1 represent the 
precipitate, matrix and interface respectively. The latter is therefore located 
by the region over which φ changes from its precipitate-value to its matrix-
value. The range over which it changes is called the width of the interface. 
The set of values of the order parameter over the whole microstructure is 
the phase field. 
 
The term ( )2ε φ∇  represents the free energy component due to the 
heterogeneous nature of the system, where the order parameter is not 
constant. It can be regarded as an interfacial energy, although the interface 
may be broad. 
 
1(j) 
 
Interfacial stability during growth determines whether the transformation 
occurs at a dendritic, cellular or planar front. The stability of the interface 



 

 

to perturbations depends on the nature and extent of the undercooling 
beyond the interface (e.g. thermal and solute gradients). 
 
Strain energy due to transformation affects the shape as the precipitate 
attempts to minimise strains. In the case of martensitic transformation this 
leads to a thin–plate shape. 
 
The minimisation of interfacial energy can determine the equilibrium 
shape. The shape will be spherical when the interfacial energy does not 
depend on orientation. More complex equilibrium shapes are found when 
the latter is not true. 



 

 

SECTION B 
 
2. 
 
A neural network is a very flexible, non–linear function that can capture 
complex patterns in data, whereas a linear regression method begins with 
the assumption that the problem is linear. Because of this flexibility, it is 
also able to represent better the interactions between input variables. With 
a neural network it is not necessary to specify the functional relation 
between the input and output variables at the beginning of the analysis. 
 

[20%] 
 
The experimental data are randomly divided into training and test data. The 
former is used to create the model, and the latter to assess its ability to 
generalise. One way to avoid overfitting is to minimise the test error 
resulting from fitting to the training data. Whilst the error resulting from 
the training data will be a monotonically decreasing function of the number 
of training steps, the test error will have a minimum at the point where 
overfitting begins to occur. 
 

[25%] 
 
Fewer data will lead to a greater uncertainty of modelling, since many 
functions can in principle fit the same data. 

[15%] 
 
The greater the level of noise in the experimental data (e.g. when repeated 
experiments give different results), the worse will be the ability to create a 
good model. Similarly, mistakes made in assembling the dataset will lead 
to outliers that can skew the training process. The data may not be 
uniformly dispersed in the input space, in which case the predictions may 
be uncertain in the regions where data are sparse. 

[30%] 
 
Input data with the highest significance for predicting the strength of a 
steel weld include: ultimate tensile strength, yield strength, tempering time, 
tempering temperature, heat input, oxygen content and chemical 
composition. The majority of these factors should be given for full credit. 

[10%] 
 
 
 



 

 

3. 
 
Hardening (increase in plastic yield stress) is clearly of interest for 
structural materials. It is particularly useful for the lightweight metal 
aluminium that cannot be hardened by the types of polymorphic 
transformation (austenite-ferrite) applicable in steels. Choice of the 
annealing treatment allows fine control of the mechanical properties, 
including a compromise between hardness (high yield stress) and ductility. 

[10%] 
The yield stress is an extrinsic property, strongly affected by the 
microstructure of the material. In contrast, Young’s modulus is in intrinsic 
property largely independent of microstructure and dependent on the 
average bonding in the material. Young’s modulus is affected very little by 
precipitation. Electron scattering by solute atoms is much stronger than by 
particles. As the copper atoms in solution in the aluminium matrix in Al-
Cu come out of solution and form precipitates (of Al2Cu), the electrical 
resistivity falls. 

[20%] 
 
The maximum in yield stress is observed on annealing an Al-Cu alloy in 
which all the copper is initially in solid solution in the aluminium. (This 
supersaturated state is achieved by quenching after a solution treatment at 
high temperature — this might be illustrated on a phase diagram, but this is 
not an essential part of the answer.) Plastic flow is by dislocation motion, 
and this is impeded by the formation of precipitate particles. In the early 
stages of annealing the supersaturated solid solution, the precipitates are 
fine and their overall volume fraction increases with time.  In this regime 
the dislocations cut through the precipitate particles and this cutting 
becomes more and more difficult.  In the later stages of the annealing, the 
precipitation is complete the final volume fraction is reached), but the 
particles undergo Ostwald ripening. The precipitate dispersion coarsens to 
give fewer, larger particles, a change favoured by the reduction of particle-
matrix interfacial area. In the coarsened dispersion, the inter-particle 
separation increases, and the dislocations can bow between the particles 
with increasing ease. 

[40%] 
 
The last part of the question is deliberately open-ended, designed to permit 
a wide range of answers that might include some of the following: 
 
— One possibility is to eschew mechanistic analysis and to use neural-
network modelling: accumulated hardening data can then contribute to a 
quantitative model. 



 

 

— Another possibility is to focus on the need to model transformation 
kinetics, using the Avrami approach for fraction precipitated and the basic 
laws for Ostwald ripening. 
— More detailed modelling could tackle the nucleation and growth of 
the precipitate particles. 
— There may also be interest in modelling the dislocation dynamics. 
— Thermodynamic modelling can used for phase-diagram prediction, 
important for predicting precipitate phase, composition and equilibrium 
volume fraction. 

— Diffusion modelling may be important in understanding initial 
formation of a uniform-composition supersaturated solid 
solution, as well as providing an underpinning for the 
microstructural modelling. 

[30%] 
 
4. 
 
The main parameters for analysis of a 2-D heat transfer problem are the 
intrinsic material properties (e.g. thermal conductivity of the constituent 
materials) and the boundary conditions (convection, conduction, radiation, 
heat generation or input, etc.) Since no large-scale deformation is being 
considered, we do not need to be concerned about distortion of the 
elements and remeshing. To minimise the number of nodes and decrease 
computation time, a simple three-node triangular element should be used 
for the problem described in the question. 

[25%] 
For problems involving large-scale deformation, constitutive relationships 
describing stress, strain, strain rate, etc. are required, along with the usual 
parameters required for heat transfer problems. Additionally, assumptions 
regarding the nature of elastic deformation (rigid, perfectly elastic, elastic-
plastic, elastic-perfectly plastic) need to be addressed in the FE analysis. 
Due to large-scale deformation, nodal positions become displaced and the 
elements must be able to undergo remeshing. Elements suitable for 
remeshing are the three node triangular element and the two dimensional 
mini element. 

[25%] 
 
Shape functions are comprised of a linear combination of functions that 
relate the numerical nodal values to the function values and approximate 
the exact solution within the element (see diagram below). Between 
adjacent nodes, the shape function expresses the particular set of partial 
differential equations as integrals or averages of the solution. Shape 
functions can be quadratic or linear. Essentially, shape functions 



 

 

distinguish the finite element method from other simpler analysis 
techniques such as the finite difference method. 
 

 
[40%] 

 
Experimental validation is required to obtain the actual solution to the 
Jominy end quench bar problem. 

[10%] 



 

 

5.  
 
Partition function ( )Bexp /i

i
Z E k T= −∑ , or alternatively 

( )exp i
i

Z Eβ= −∑ , where β = 1/(kBT) and Ei are the energies of each 

microstate i. In each case, the sum runs over all microstates of system. 
 
Helmholtz free energy B lnF k T Z= − . 
 
[A derivation is not required, but follows simply from the above definition 
of partition function if enthalpy is substituted for energy] 
 

[20%] 
 
For a single particle: 
 

( ) ( )
( )

1 1 exp / exp /

1 2cosh /
B B

B

Z V k T V k T

V k T

ε ε
ε

= + − +

= +
 

 
Hence for N independent, distinguishable particles: 
 

( )1 2cosh /
N

N BZ V k Tε= +    
 

( ){ }
( )
( )

B

B

B

d d d

ln 1 2cosh /

2 sinh /
1 2cosh /

B
T

F S T p V
Fp Nk T V k T
V V

N V k T
p

V k T

ε

ε ε
ε

= − −
∂ ∂ ∴ = − = +    ∂ ∂ 

⇒ =
+

 

[50%] 
 

If particles are not independent, then partition function will not factorise 
and the analytical derivative of the Helmholtz free energy will become 
extremely unwieldy to compute. An alternative is to use either Metropolis 
Monte Carlo (constant volume) to calculate the system pressure as a 
function of volume, or isothermal-isobaric Monte Carlo (constant pressure) 
to calculate system volume as a function of pressure. A brief summary of 
the general Monte Carlo algorithm should be given, including volume-
changing moves for constant pressure method. 

[30%] 



 

 

6. 
 
Growth is said to be diffusion-controlled when the majority of the free 
energy available is dissipated in the diffusion of solute ahead of the 
interface. Interface-controlled growth is said to occur when the majority of 
the free energy is dissipated in the transfer of atoms across the boundary. 
 

[20%] 
 

Calculate independently, the growth rate using the diffusion-controlled 
growth equation as a function of free energy. Similarly calculate the 
growth rate using the interface-controlled growth equation as a function of 
free energy. There is only one interface; both equations must therefore give 
the same velocity. The respective dissipations must therefore be chosen 
such that the velocity obtained from each function is the same. The 
students may use the electrical analogy (lecture notes) to explain this. 
 

[20%] 
 
The volume of a particle nucleated at time t = τ is given by 
 

( )334
3

v G tτ π τ= −  

 
The change in extended volume over the interval τ and τ + dτ is 
 

( )334d d
3e VV G t I Vα π τ τ= − × × ×  

 

On substituting into d d 1e
VV V
V

α
α α  

= − 
 

 we get 

 

( )334d 1 d
3 V

VV G t I V
V

α
α π τ τ

 
= − − 
 

, then writing /V Vαξ =  and integrating 

 

( ) ( )33

0

4ln 1 d
3

t

VG I tξ π τ τ− − = −∫ , and integrating again 

 
{ }3 41 exp /3VG I tξ π= − −  

[30%] 



 

 

Using the data in the table provided, a plot of ( ){ }ln ln 1 ξ− −  versus ln( )t  
yields a gradient of 3, as opposed to the above derivation that should 
produce an exponent of 4. This means that the particles all start from a 
fixed number of existing nuclei, thus reducing the exponent by one in the 
integration. 
 

 
[30%] 



 

 

7. 
 
Consider the pure components A and B with molar free energies 0

Aµ  and 
0
Bµ  respectively. The free energy of a mechanical mixture is simply an 

average given by: 
0 0{mixture} (1 ) A BG x xµ µ= − +  

 
where x is the mole fraction of B. It is assumed that the particles are so 
large that the A and B atoms do not ‘feel’ each other’s presence via 
interatomic forces between unlike atoms. 
 
A solid solution is the most intimate mixtures of elementary entities, 
whether they are atoms of molecules. There will be a reduction in free 
energy relative to the mechanical mixture, because of the changes in the 
configurational entropy of mixing. Students may illustrate this using free 
energy diagrams. 

[20%] 
The number of A-A bonds in a mole of solution is 21

2 A (1 )zN x− . This is 
because in a random solution, the chance of finding an A atom is (1 )x−  
and that of successively finding two A atoms is therefore 2(1 )x− . The 
number of B-B bonds is similarly 21

2 AzN x , and number of A-B + B-A 
bonds is A (1 )zN x x− . 

[20%] 
 
The energy, defined relative to infinitely separated atoms, before mixing is 
therefore: 

( ) ( )1
2 A AA BB(1 ) 2 2zN x xε ε− − + −    

 
since the binding energy per pair of atoms is 2ε−  and 1

2 AzN  is the number 
of bonds. After mixing, the corresponding energy is given by: 
 

( ) ( ) ( )2 21
2 A AA BB AB(1 ) 2 2 2 (1 ) 2zN x x x xε ε ε − − + − + − −   

 
where the factor of two in the last term is to count A-B and B-A bonds. 
Therefore, the change in energy due to mixing is the latter minus the 
former, i.e.: 
 



 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2
M A AA BB AB AA BB

A AA BB AB

A

(1 ) (1 ) 2 (1 )

(1 ) (1 ) (1 ) 2

(1 )

H zN x x x x x x

zN x x x x x x

zN x x

ε ε ε ε ε

ε ε ε
ω

 ∆ = − − + + − − − − 
= − − − − − + −  
= −

[40%] 
 
It is important to note that this derivation assumes a random distribution of 
atoms, whereas if M 0H∆ ≠  then we do not expect a random distribution at 
low temperatures. 

[10%] 
 
The free energy curve can be made asymmetrical by making the ω term a 
function of concentration. 
 

[10%] 
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