
MASTER OF PHILOSOPHY  Modelling of Materials 
 
Examiner’s Solutions to Paper 2 
 
SECTION A 
 
1(a) 
 
A dislocation is a line of discontinuity in a crystalline material with 
translational symmetry. The character of the dislocation is described by 
the angle between the line of dislocation and a vector, known as the 
Burgers vector, which gives the magnitude and direction of the lattice 
displacement generated by the presence of the dislocation. Dislocations 
where the Burgers vector is normal to the dislocation line are known as 
edge dislocations, and those where the Burgers vector is parallel to the 
dislocation line are known as screw dislocations. Dislocations where the 
angle is intermediate between zero and ninety degrees are known as 
mixed character dislocations. 
 
A dislocation enables the crystal planes to glide in a piecewise manner 
rather than the rigid displacement of the entire plane. This greatly reduces 
the stress required to cause slip, and leads to yield stresses that are well 
below the theoretically calculated maximum based on a perfect crystal. 
 
 
1(b) 
 
Stress and strain tensors are both symmetric. This is a requirement to 
prevent them from describing rotation as well as deformation. This means 
that they each have 6 independent elements rather than 9, reducing the 
number of constants to 6 6 36× = . Further symmetry considerations 
reduce the most general case to 21 for deformation of the least symmetric 
solid. 
 
(i) 21, as described above 
(ii) An isotropic system requires only 2 constants to describe the 

behaviour, e.g. Young’s modulus and Poisson’s ratio. 
 
1(c) 
 
In large-scale materials production and processing, the commercial 
success of the product is very sensitive to cost; great efforts are therefore 
made to minimize costs by optimising the processing. The development 



of effective process changes could be by ‘trial and error’, but large-scale 
experimental trials are extremely costly, both in terms of material used 
and in terms of the temporary loss of production time. Therefore 
modelling is an attractive alternative. Even if an entire process is not 
modelled in its full complexity, idealised modelling can be useful in 
identifying key parameters for experimental investigation. (A superior 
answer should include one or two examples.) 
 
1(d) 
 
The Bragg condition in k-space is that the difference between the incident 
and scattered wave vectors must equal a reciprocal lattice vector g. 
 
i.e.  k – k′ = g       (k′ is scattered wave vector) 
 
In electron diffraction, the scattering process is elastic and energy is 
conserved so that the magnitudes of k and k′ are equal. Thus 
 
(k + g)2  =  k2 i.e. 2k.g  =  g2 
 
or      k cosθ  =  g/2        (θ is angle between k and g)   
 
This means that the component of the incident wave vector k along the 
reciprocal lattice vector g must be half the length of g. Thus an incident 
wave vector k will satisfy the Bragg condition if and only if the tip of the 
vector lies in a plane that is the perpendicular bisector of a line joining the 
origin of k-space to a reciprocal lattice point g. Such planes in k-space are 
called Bragg planes or Brillouin zone boundaries.    
 
Thus Brillouin zones are defined by sets of planes that are the 
perpendicular bisectors of reciprocal lattice points. The 1st BZ is the set 
of k-points that can be reached from the origin without crossing any 
Bragg plane. The nth BZ is the set of k-points that can be reached from 
the origin by crossing n−1 Bragg planes but no fewer.    
 
1(e) 
 
FORTRAN has two very similar classes of subprogram: functions, which 
return value to the calling code, and subroutines, which do not. Uses of 
these subprograms in the FORTRAN language include: 

• Using functions provided by the language to return common 
mathematical results which would be laborious to calculate 
otherwise (such as SQRT). 



• Using subprograms to invoke other code that the user has not 
written, and may not understand in detail; for example, a graphics 
library. 

• Using subprograms to hold code that is used in several parts of the 
program; for example, a program might need to evaluate the 
determinant of several matrices. A function to calculate this would 
make the calling code clearer, and reduce the possibility of error. 

• Subprograms can be used simply to clarify the structure of a 
program; for example, one subprogram could read parameters, 
another perform calculations with them, third print out the results. 

• Subprograms can be used to keep together code that might require 
modification for another installation (which is format- or 
implementation-dependent, for example). 

 
1(f) 
 
Grain boundaries are defects and have an excess free energy. With a 
larger average grain diameter, there is a reduced area of grain boundary 
per unit volume of material and therefore a favourable reduction of free 
energy. 
 
To have an increased average grain size in a given volume of material, 
there must be fewer grains. Therefore there must be a mechanism of grain 
death. Grain growth relies on having a distribution of grain size, smaller 
grains shrinking and disappearing, larger grains growing. 
 
The motion of a grain boundary is governed by its curvature and it will 
move towards its centre of curvature. Smaller grains tend to have fewer 
sides with a curvature such as to cause the grain to shrink. Larger grains 
have scalloped surfaces with centres of curvature outside the grain; they 
therefore tend to grow. The curvature of the grain boundaries arises from 
the force balance at their junctions tending to give 120˚ angles between 
the boundaries. While 120˚ junctions in a 2-D grain structure of equal-
sized hexagons gives straight (non-migrating) boundaries, other less ideal 
grain structures always have curved boundaries. (This part of the answer 
may be illustrated with sketches of grains in 2-D, showing that those with 
less than 6 sides shrink, while those with more than 6 sides grow.) 
 
1(g) 
 
Thermal importance sampling means that each state of a system is 
sampled from a thermodynamic ensemble according to its Boltzmann 
probability. For systems in equilibrium, the expectation values of the 



thermodynamic state functions can be found by arithmetically averaging 
over states sampled according to their thermal importance. Hence, states 
that are thermodynamically unimportant do not contribute to the 
averages. 
 
The Metropolis Monte Carlo method achieves thermal importance 
sampling using a stochastic algorithm, which can be summarised as 
follows: 
 

1. Start with system in arbitrarily chosen state µ and evaluate the 
internal energy µE  

2. Generate a new state ν by a small ergodic perturbation to state µ 
and evaluate νE  

3. If 0<− µν EE , then accept the new state. If 0>− µν EE , then accept 
the new state with probability [ ])(exp µνβ EE −−  

4. Return to step 2 and repeat until equilibrium is achieved (i.e. 
thermodynamic state function of interest has converged to steady-
state value when averaged over all configurations) 

 
1(h) 
 
The three distinct processing stages are: pre-processing, analysis, and 
post-processing. 
 
Pre-processing requires specification of the dimensionality of the 
problem, definition of the shape or outline of the body under 
consideration, generation of the mesh and definition of the boundary 
conditions. 
 
Analysis involves solving the field variables at the nodes of the various 
elements. This is accomplished by solving the governing differential 
equations subject to the constraints of the boundary conditions. Typically, 
this involves solving large linear systems of equations using Gaussian 
elimination. 
 
Post-processing involves visualisation of the solution and interpolation. 
Since the analysis only determines the values of the field variables at the 
nodes, interpolation is required to obtain numerical values at all other 
points. 
 
Of all the three stages, pre-processing is the most influential stages in FE 
analysis. 



 
 
1(i) 
 
For solid state systems, Gibbs’ phase rule can be expressed as: 

1F c p= − + , where F is the number of degrees of freedom, c is the 
number of components in the system, and p is the number of phases in the 
system. 
 
The phase rule specifies the number of degrees of freedom for a given 
system at equilibrium. In thermodynamics, the number of degrees of 
freedom is the smallest number of intensive variables (i.e. pressure, 
temperature, and concentrations of components in each phase) that must 
be specified to completely describe the state of the system. For a solid 
state system, under normal circumstances, constant pressure (1 atm) is 
assumed and therefore one degree of freedom is already defined. 
 
For three phases to be in equilibrium in a two-component system, the 
system temperature, pressure and concentration of all the components 
must be fixed, as the number of degrees of freedom is zero. 
 
1(j) 
 
Common process attributes to consider for selection of shaping process 
are: compatibility with material, size, minimum section thickness, surface 
roughness, dimensional tolerance, and process economics. 
 
CES contains separate databases for joining and surface treatment, since 
selection in these process classes poses different questions to the 
designer, specific to these process classes – for example: 
 

• Joining processes:  compatibility of component shape and process 
with joint geometry. 

• Surface treatment processes:  the function of the surface treatment 
(corrosion, wear, aesthetics etc). 

 
Processing rate is not a simple characteristic of a given process, since the 
rate in a given situation usually depends on complex interactions between 
process parameters, aspects of the design, and the material being 
processed. For example, in cutting processes, the rate depends on the type 
of process mechanism (mechanical, thermal etc), the component 
thickness, and the properties of the material being cut (thermal or 
mechanical). 



SECTION B 
 
2. 
 
Assumptions of the free electron model: 
 

• The solid is composed of a gas of negatively charged electrons that 
is neutralised by a positive background charge. 
 

• Explicit electron-ion interactions are ignored (the free electron 
approximation). 

 
• Explicit electron-electron interactions are ignored (the independent 

electron approximation). 
 
The E(k) curve for free electrons in one dimension is parabolic (~ k2). At 
zero Kelvin, the Fermi energy EF is defined as the energy of the highest 
occupied energy level. The Fermi wave-vector kF is the wave-vector 
corresponding to the Fermi energy. At finite temperatures, the Fermi 
energy is defined as the energy for which the probability of occupation is 
1/2. The Fermi surface for free-electrons in 3-D (at zero Kelvin) is a 
sphere in k-space. Deviations from the spherical shape are expected in 
reality because of the presence of an electron-ion interaction which 
causes Bragg scattering and discontinuities in E(k). 

[30%] 
 
The density of states is defined as the number of electron states N(E) per 

unit energy range and given mathematically by ( )( ) dN ED E
dE

=  . Note 

that a state is defined by both a level and a spin. The number of states = 
twice the number of levels due to the Pauli exclusion principle. 
 
 
Consider free electrons in a 3-D box of volume V = L3 
 

In k-space, the volume per k-point is 
3

2
L
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 =  ( )32

V

π
 

 
If the box contains N electrons, then the volume of the Fermi sphere is  

( )321
2

N
V

π
 



The factor of 1/2 comes from the Pauli exclusion principle since 2 
electrons can occupy each k-state. 

 
Note that the number of electrons N equals the number of states. 
 
 

  Hence  ( )321 4 3
2 3

N kFV

π
π=  

 

 therefore ( )1/323k ncF π=   where nc (electron density) =  N/V 

 

  and    ( )
2 2 2 2 / 323
2 2

F
F c

kE n
m m
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Re-arranging this equation gives the number of states N(E) with energies 

up to a given energy E: 
 

      
3/2

2
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  hence 
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[50%] 
 
To calculate the average electronic energy at zero Kelvin: 
    

<E>   =   total electron energy
total no. of electrons

   =     
E D(E) dE

EF

D(E) dE
EF

  =    
E3/2  dE

EF

E1/2  dE
EF

  =  3
5

EF 

 
[20%] 

 
 
 
 
 



3. 
 
Thermodynamic models can be used to predict the free energies of each 
phase of a system as a function of temperature and the concentrations and 
interaction parameters of the components. The total free energy is then 
minimised by taking the phase with the lowest free energy, or by using 
the double tangent construction, as appropriate. The excess Gibbs free 
energy for binary and ternary systems is defined as the free energy in 
excess of an ideal solution, i.e. one in which the enthalpy of mixing is 
zero. The excess free energy is thus related to the interactions between 
the components, and the degree to which they are mixed. The regular 
solution model assumes random mixing, and gives an enthalpy of mixing 
which is proportional to the product of the concentrations of each 
component in a binary system. 

[40%] 
 
The advantages of using thermodynamic models are that they allow 
analytical computation of the phase boundaries and require only a few 
crucial experiments to be carried out in order to parameterise the model 
(as opposed to many experiments needed to follow the phase boundaries 
in the absence of a good model). The main disadvantage is that the 
models do not always work for the systems being described, e.g. the 
regular solution model breaks down for systems where there is non-
random mixing (in which case the quasi-chemical model can be used). 
 

[20%] 
 

( )A B A A B Bln lnmixG x x RT x x x xω∆ = + +  
 
Assuming binary mixture, and writing A B1x x= −  
 

( ) ( )mix B
B

B B

d
1 2 ln
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[40%] 
 



4. 
 
Mass of strut: LAm ρ=   and of panel: LDBm ρ=  

Dimensional variable for strut is area A;  from stiffness equation: 
ES

LA =  

Hence mass of strut: SE/Lm 2ρ= , so for minimum mass, minimise 
)E/( ρ  

Dimensional variable for panel is thickness D;  from stiffness equation: 
313

1
/

SBE
LCD ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

Hence mass of panel: 
313

1
/
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⎟
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⎞
⎜
⎜
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⎛
= ρ , so for minimum mass, 

minimise  )E/( / 31ρ  
[30%] 

 
Values of performance indices: 
 
 

 E (GPa) ρ  (Mg/m3) )E/( ρ    (× 100) )E/( / 31ρ   (× 100) 
Low alloy steel 209 7.85 3.76 1.32 
Ti alloy 105 4.6 4.38 0.98 
Mg alloy 44.5 1.85 4.16 0.52 
CFRP 110 1.55 1.41 0.32 
 
For the strut, CFRP has a clear advantage, and the metals compete quite 
closely.  For the panel, CFRP is still the best, but the metals now show a 
definite ranking, with Mg closest to CFRP. However, CFRP is the most 
expensive material per unit mass. 

[40%] 
 
Graphical approach on a material property chart of log(E) – log (ρ): 
 
Constant values of the performance indices plot as straight lines of slope 
1 and 3 respectively.  Materials lying on a line are equally good; materials 
above the line are better. 
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[30%] 
 

 
5.  
 
The Frisch Hasslaucher Pomeau (FHP) lattice gas model is constructed of 
discrete, identical particles that move from site to site on a triangular 
lattice, colliding when they meet, always conserving particle number and 
momentum. FHP showed that it is possible to derive the Navier-Stokes 
equations from the micro dynamics of this system. The innovative feature 
of FHP model is the simultaneous discretisation of space, time, velocity 
and density. No more than one particle may reside at a given site and 
move with a given velocity. Unlike purely diffusive lattice gases, 
momentum is conserved in each collision and so the system is Galilean 
invariant and therefore displays hydrodynamic behaviour. Unlike the 
hydrodynamic lattice gas models that preceded it, the FHP model has an 
isotropic hydrodynamic limit because of the underlying symmetry of the 
triangular lattice. 
 
The lattice director model can be used to study degree of orientation and 
defect structure in nematic liquid crystalline systems. In the lattice 
director model, the average molecular director field is spatially coarse-
grained onto a multi-dimensional grid. Adjacent sites on the lattice 
interact through a simple Hamiltonian, and the model is relaxed to a state 
of minimum energy. The aims are to reveal the microstructure in a bulk 
sample, understand how this evolves during processing and how the 
microstructure affects the properties. 

[30%] 
A suitable Hamiltonian for an elastically isotropic system is: 



 

( )2

1
sin θ θ

n

i
i

f k
=

= −∑  

 
where θ θi −  is the angle between the average molecular director θi  in 
cell i and the nematic director θ , and k is an average elastic constant. The 
sum runs over all adjacent cells (4 in 2D, 6 in 3D for a cubic lattice). This 
is sometimes called the Lebwohl-Lasher potential. 
 
A standard Metropolis Monte Carlo simulation can be used to relax the 
lattice director model to the lowest free energy, and an outline of the 
algorithm should be given. 

[40%] 
 

The Lebwohl-Lasher potential could also be implemented on a finite 
element grid, where the strain field between adjacent nodes is minimised 
by a deterministic finite difference algorithm. The differences between 
this method and the probabilistic Monte Carlo algorithm are that 
dynamical information about the coarsening process could easily be 
extracted, and that there is no thermal noise in the system. The absence of 
thermal noise could lead to the system becoming trapped in metastable 
states, and so a stochastic element may be introduced to avoid this. 
 

[40%] 
6. 
 
The molecular mechanics approach to modelling atomistic systems is 
based on the construction of a classical potential energy surface, called a 
force field, which contains terms representing the interactions between 
the atoms. 
 
The commonly-used DREIDING force field is represented by the 
following potential energy function: 
 

( ) ( ) ( )
12 6

2 2 φb θ 0 0
0 0 0

0
θ θ 1 cos3φ 2

2 2 2 4 ε
i j

ij ijk ijkl
ij ij ij

k q qk k R RV r r D
r r π r

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − + + + − +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
 
where the k are force constants, ijr  the interatomic separations, ijkθ  the 
angles between adjacent triplets of bonded atoms, ijklϕ  the dihedral angles 
between adjacent quartets of bonded atoms, D0 is the well-depth and R0 



the equilibrium separation for the van der Waals interactions and q the 
electrostatic charges on the atoms. The first three terms are called bonded 
terms, and represent the internal degrees of freedom of the molecule, and 
the last two terms are the non-bonded terms, and represent the 
interactions between molecules. 

[20%] 
 
The technique of using energy minimisation can be used to find the 
lowest potential energy structure of an atomistic system, and is often very 
useful in situations where the interactions are very strong or the thermal 
energy is very low. It can also be useful to prepare molecular models for 
molecular dynamics simulations, which require a stable initial 
configuration from which to initialise the force arrays from the gradient 
of the potential energy. 
 
An example of a numerical method that would be suitable for energy 
minimisation of a large atomistic system would be a first derivative 
method such as conjugate gradients or steepest descents. In practice, a 
combination of methods can be used to achieve optimum speed of 
convergence both far from and closer to the local energy minimum. 
 
Strictly speaking, energy minimisation should only be used for systems at 
zero Kelvin, and is therefore incapable of describing entropic effects. 
Also, there is no known algorithm that is guaranteed to find the global 
minimum energy state in a finite period of time, and for large systems it 
can be impossible to judge whether the global minimum has been found 
or is even close by. Since simple energy minimisation strategies usually 
follow a monotonically decreasing energy pathway, the system is very 
easily caught in local minima. 

[40%] 
 
Since the electrostatic potential energy is given by ( )0qE r r− , then the 
total potential energy of the system is: 
 

( ) ( )21
2 0 0( )V r k r r qE r r= − − −  

  
Hence, minimising with respect to r: 
 

( )0
d 0
d
V k r r qE
r

= − − =  



gives 0
0 0

1qE r qEr r
k r r k

= + ⇒ = +  

Using the numerical values provided, 3

0
1 9.6532 10 1.0096532r

r
−= + × . 

[40%] 
 
 

 
 



7. 
 
According to effective medium theory, the total energy of the solid can be 
written: 
 

( )tot i i R
i

U U Uρ= +∑  

 
where the first term is the energy to embed the ith atom in the jellium of 
density ρ i  (attractive) and the second term is the repulsive electrostatic 
overlap interaction. 
 
The method can be used to construct semi-empirical potentials by 
formulating physically reasonable forms for the attractive embedding 
function Ui and the repulsive overlap energy UR. The former is a non-
linear function of ρ (usually concave negative to reflect the fact that the 
energy/atom decreases like this with increasing coordination) while the 
latter can be simple pair potential (exponentials, polynomials etc.) 
 
In the embedded atom method Ui has been implemented in several 
functional forms (powers, exponentials) and is taken as the energy to 
embed an atom in an electron gas ρ where ρ is calculated as linear 
superposition of atomic electron densities.  
 
In the Finnis-Sinclair approach Ui takes a square root functional form. 
This is justified by tight-binding theory and experimental observation. 
 
One approach is to start with the concept of bond order (bond strength). 
Observation suggests that bond order is a decreasing function of local 
coordination Z. Tight-binding says that bond order goes as 1/√Z. Thus the 
energy/bond goes as 1/√Z and the bond energy/atom goes as √Z. In other 
words the energy/atom goes as -√Z (the negative of cohesive energy and a 
concave negative function). 

[30%] 
 
The expression for the energy/atom in the second part of this question is a 
Finnis-Sinclair potential where the electron density has been taken as a 
pair potential. 
 
First nearest neighbour distance r1 = ao√3/2 
Second nearest neighbour distance r2 = a0 

 
 



Hence using the given data we obtain 
 

V1 = 0.4063 eV, φ1 = 2.7526 eV 
V2 = 0.0210 eV, φ2 = 1.5252 eV 

[20%] 
 

A reference atom in the bcc structure has 8 first nearest neighbours and 6 
second nearest neighbours. The total energy of these 14 atoms with the 
reference atom present is given by 
 

( )
1/ 214 1/ 2

1 2 1 2
1 0 0

1 1( ) ( ) 14 (8 6 ) 14 8 6
2 2

total
perfect i i

j i i
U V r A r V V Aφ φ φ

= ≠ ≠

⎧ ⎫⎛ ⎞⎪ ⎪ ⎛ ⎞= − = + − +⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎪⎪ ⎭⎩
∑ ∑ ∑

 
The total energy of these 14 atoms with the reference atom absent given 
by 

 

( ) ( )1/ 2 1/ 2
1 2 1 2 1 2 1 2

1 18 (7 6 ) 6 (8 5 ) 8 7 6 6 8 5
2 2

total
vacancyU V V V V A Aφ φ φ φ⎛ ⎞ ⎛ ⎞= + + + − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 
Thus the vacancy formation energy is given by 
 

total total
V vacancy perfectE U U= −  

 

( ) ( ) ( ) ( )1/ 2 1/ 2 1/ 2
1 2 1 2 1 2 1 24 3 8 7 6 6 8 5 14 8 6V V A φ φ φ φ φ φ⎡ ⎤= − + − + + + − +⎣ ⎦  

 
[40%] 

 
Substituting in values for V1 , φ1 , V2 ,  and φ2  gives EV = 3.7116 eV. 
This value will be higher than the experimental value since it ignores 
atomic relaxation around the vacancy. 

[10%] 


