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MASTER OF PHILOSOPHY  Modelling of Materials 2005 
 
Examiners’ Solutions to Paper 1 
 
SECTION A 
 
1(a) 
 
The distinction between a model and a theory is not straightforward since 
practitioners often use the two terms interchangeably. It can even become a 
matter of philosophical debate. Therefore any well-reasoned answer is 
acceptable. One approach based on reductionism would go as follows: 
 
A theory in materials science is a set of scientific principles or propositions 
based on proven laws of physics and chemistry. It can be mathematically 
rigorous, is usually expressed in terms algebraic, differential or integral 
equations and attempts to predict observable quantities. It can exist at 
various levels of complexity and may or may not have an analytical 
solution. Examples include dislocation theory, nucleation theory, free 
electron theory, kinetic theory etc.      
A model is a reduced or idealised theory that removes complicating factors 
and captures only essential features. It focuses on observables using 
simplified state equations. It may involve parametric fitting to 
experimental data and may or may not have an analytical solution. 
Examples include the pair potential model for solids, the Ising model for 
phase transitions, cellular models for microstructural evolution and neural 
network models for interpolating complex materials data.   
 
Synergism is a cooperative action such that the total effect is greater than 
the sum of the effects taken independently. In the case of modelling, theory 
and experiment the idea is that their combined application to a problem in 
materials science will have a greater effect than if either method were used 
alone. The coupling between theory, modelling and experiment also serves 
to validate the model and confirm the experimental observations. 
 
 
1(b) 
 
The Embedded Atom Method (EAM) is an empirical implementation of 
Effective Medium Theory for the binding energy of a metal. This energy is 
written as two terms, one for the attractive energy of embedding each atom 
in the electron density provided by neighbouring atoms, and another 
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describing the electrostatic repulsive overlap interaction of neutral atoms. 
Thus the binding energy is given by: 
 
    U = F(!i ) +
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where !i = !

A

i" j
# (rij)  which is the charge at the i th nucleus due to the 

spherically symmetric atomic charge densities !
A
(rij)of neighbouring 

atoms. F(!i ) is the embedding function and !(rij) is a pair potential 
describing the overlap interaction. Both the embedding function and pair 
potential are parametrically fitted to match various bulk and defect 
properties of the metal concerned.             
 
The form of F(!i ) is chosen to reflect the fact that the energy of an atom is 
a non-linear function of the coordination number. This function is concave 
negative and in a related model by Finnis and Sinclair takes a (negative) 
square root form.                
 
Previous methods for simulating metals have used pair potentials to 
describe all the binding energy.  These methods erroneously predict the 
Cauchy relation for the elastic constants of a cubic metal (c12 = c44) and do 
not give a bond strength which increases as the coordination number 
decreases. EAM successfully overcomes both of these previous 
deficiencies.          
 
 
1(c) 
 
Answer to include descriptions of at least three of the following methods: 
Cooling curves; Metallography; X-ray diffraction; Dilatometry; Electrical 
conductivity.  
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1(d) 
 
For a general stress state imposed upon a unit cube within a material, we 

have: 
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using the convention that !ijdenotes a stress in the ‘i’ direction on the 
‘j’ face. Stresses of the form 

ii
!  are tensile stresses and stresses of the 

form ij!  (i ≠ j) are shear stresses. 
 
If we examine the forces acting on the 2-3 section of the unit cube 
(i.e., looking towards the cube anti-parallel to the ‘1’ axis), we have: 
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If we take moments about ‘O’: 
 
Sum of clockwise moments = !23

2
+
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= !23 

 
Sum of anticlockwise moments = !32
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= ! 32 
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So the condition that the cube is in static equilibrium (i.e., for this 
section, it does not rotate about the ‘1’ axis) requires !23 = !32 . 
 
Similarly, looking at the 1-2 and 3-1 sections of the cube, we find 
!12 = ! 21 and !31 = !13 respectively. Hence we have shown !ij = ! ji  
for i ≠ j. 
 
For the stress state 
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we simply need to find the eigenvalues of the matrix to specify the 
principal stresses. 
 
Clearly, by inspection, one of the principal stresses is 33! . 
 
The other two principal stresses can be found by solving the 2×2 
determinant 
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Solving the determinant, we have: 
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whence the two other principal stresses are 
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Hence the three principal stresses are 
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1(e) 
 
  subroutine tspose (t) 
  implicit none 
  real temp 
  real t(10,10) 
  integer i, j 
  do 10, i = 1, 9 
   do 10, j = i+1, 10 
   temp = t(i,j) 
   t(i,j) = t(j,i) 
   t(j,i) = temp 

10 continue 
return 
end 

 
 

1(f) 
 
The distinguishing feature is that a crystalline material exhibits long-range 
order whereas an amorphous material does not. Crystalline materials 
include the vast majority of metals in their equilibrium states. Amorphous 
materials include metallic glass, silica glass, glassy polymers such as 
PMMA (acrylic). 
An amorphous solid can be made by cooling a liquid at a rate that is fast 
enough to suppress crystallisation. Glassy metallic alloys generally have to 
be cooled at around 106 K/s, although there are complex alloys that 
become glassy at much lower cooling rates. Window glass remains glassy 
even when cooled slowly, because silica molecules are strongly bonded 
into a huge three-dimensional network. 
 
 
1(g) 
 
Fick’s law states:  JA = !DA

"CA
"x

 

 
However, diffusion is driven by a free energy gradient. The free energy of 
A is CAµA so we should write: 
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  JA = !CAMA

"µA
"x

  so that  DA =CAMA

"µA
"CA

 

 
It is necessary to consider the free energy gradient when dealing with non-
ideal solutions, e.g. phase separation that occurs in a miscibility gap. 
Uphill diffusion occurs (i.e from low A concentration to high A 
concentration) and the driving force cannot simply be the concentration 
gradient. 
 
 
 
1(h) 
 
An artificial neural network is a parameterised non-linear mapping 
between inputs and outputs. The architecture consists of a series of nodes 
with multiple connections to other nodes. Each connection has a weight wj 
associated with it. Each node sums the weighted combination of its inputs 
y = wi

i

! xi . This value passes through a non-linear transform function 

acting as a ”hidden layer” e.g., 
 
   z = tanh(y)   or   z =1/(1+ e

!"y
)  

 
The output z is passed on to every node in the next layer. The network can 
have several hidden layers and transform functions. The key is adapting the 
weights wi to yield known target output and then using these wi on new 
input (this is called training the network).   
 
The advantages of ANN: can model non-linear problems with many 
parameters; can model complex materials phenomena for which physical 
models not exist; is highly adaptable (amount and type of input data can be 
altered). 
The disadvantage of ANN: can be used blindly without any physical 
insight or fundamental understanding of the properties or processes being 
modelled. 
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1(i) 
 
Advantages 
 
Analytical Numerical 
Simple to compute (e.g. 
spreadsheet), and sufficient for 
some simple problems 

Ability to handle complexity (in 
geometry, multiple materials in the 
problem, spatially or time-varying 
boundary conditions, temperature-
dependent properties) 

Useful to guide setting up an 
efficient numerical solution, and 
checking numerical solution works 

 

Map results over wide domain of 
input parameters 

 

Well-suited to thorough sensitivity 
analysis 

 

 
 
 
 
Disadvantages 
 
Analytical Numerical 
Limited to idealised situations 
(constant properties, simple 
boundary conditions, approximated 
geometries such as semi-infinite etc) 

Greater computational complexity, 
with greater burden of input data 
required, but too easy to use without 
sufficient validation and checking 

 Each computation for single set of 
conditions – cumbersome to span a 
wide parameter space, and too rarely 
used for sensitivity analysis 

 
 
 
1(j) 
 
The united atom approximation involves replacing each CH2 or CH3 unit in 
a hydrocarbon polymer molecule with a single united atom with an 
effective mass of 14 or 15 g mol–1 with force field parameters that are 
adjusted so as to model the steric interactions between the missing 
hydrogen atoms. The advantages of this are two-fold: (i) it reduces the 
number of atoms in the MD simulation, and (ii) it eliminates the high-
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frequency C–H bond stretching and bending modes from the simulation. 
Although (i) will accelerate the simulation by reducing the total number of 
atoms in the system, by far the most important factor is (ii), which enables 
a much shorter time step to be used in the dynamics simulation without 
numerical instability. Generally, it is the integration of the short time 
period (around 11 fs) C–H bond stretching modes that limit the maximum 
rate at which the forces in the simulation can be integrated – the typical 
time step used is 1 fs. However, elimination of the C–H stretching motions 
means time steps up to 5 fs can be used without instability, giving a speed 
up of around 500%, which is more significant than the speed up due to the 
reduction of the number of atoms. 
 
Other methods to accelerate dynamical simulations of hydrocarbons 
include the use of bond constraints (using SHAKE or RATTLE 
algorithms), which again freeze out the C–H bond stretching modes, but 
without eliminating the detailed steric interactions between the hydrogen 
atoms. This is generally a superior approach to using the united atom 
model, as the presence or absence of hydrogens will strongly affect the 
chain packing in the crystalline solid form (e.g. united atom model might 
predict hexagonal structure for crystalline polyethylene, whereas the actual 
structure is orthorhombic). Freezing out the C–H bond bending motions 
can also be achieved using SHAKE or RATTLE, although the time saving 
is hardly worth the extra computational expense of enforcing the 
constraints. However, full rigid body dynamics is not appropriate as there 
could be no conformational relaxation of the polymer, which is important 
in both solid and melt states. Lastly, multiple time step algorithms, where 
the different degrees of freedom in the molecule are integrated at different 
rates, could also be used effectively, but are more computationally 
expensive than using bond constraints and require careful choice of the 
relative time step parameters to produce a stable simulation. In summary, 
united atom models can only really be successful for the simulation of 
hydrocarbon melts or low density glassy phases, whereas bond constraints 
would be a much more suitable method for simulating high density solids 
and crystalline phases. 
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SECTION B 
 
2. 
 
Ostwald ripening is the coarsening of a precipitate dispersion (i.e. 
evolution towards fewer bigger particles, at inevitably greater separation), 
at essentially constant volume fraction of particles.  The greater separation 
of the particles permits bowing of dislocations between them;  the bowing 
stress is inversely proportional to the separation, and so ripening leads to 
softening of precipitation-hardened alloys.                                     [15%]  
 
The driving force is reduction of the interfacial area between particles and 
matrix.  As a result of the diffusional fluxes of B atoms in the matrix, the 
smaller particles shrink while the bigger particles grow.  The shrinkage of 
the smaller particles is an essential part of the coarsening process as their 
eventual disappearance reduces the population of particles — necessary if 
the average particle size is to increase while keeping their total volume 
fraction constant.   
 

 
 
The particle size distribution is typically log-normal, and evolves to 
increased average particle diameter with constant width of distribution 
(and reduced height, as total volume fraction is constant). 
 

 
   
                                                                                                       [25%] 
The derivation is bookwork, and proceeds (in outline) as follows.  The key 
assumption (consistent with the above sketch) is that the particle size 
distribution remains self-similar throughout.  The ripening involves 
diffusional fluxes of B atoms from smaller to bigger particles.  The 
enhancements of equilibrium solute contents in the matrix (compared to 
that in contact with a planar interface) due to finite particle size are 
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inversely proportional to particle radius r.  Thus the composition 
differences driving these fluxes are inversely proportional to the average 
radius 

! 

r .  The diffusion distances are proportional to 

! 

r , and thus the 
composition gradients are proportional to 1/

! 

r 
2.  The rate of change of 

! 

r  
must scale with the diffusional fluxes, and therefore with 1/

! 

r 
2.  Integrating 
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gives 
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t( ) " r 
3
0( )# t   .  

                                                                                                                [30%] 
The key parameters are those which control the diffusional fluxes.  
Obviously a lower solute diffusivity would be desirable to inhibit 
coarsening.  The composition differences (i.e., Xα(r1) – Xα(r2)) must also be 
reduced.  This can be achieved by reducing the interfacial energy γ and the 
equilibrium solute solubility Xα(∞).           [15%] 
 
The most important assumption is that there is a single well-defined 
particle size distribution which remains self-similar throughout the process.  
The evolution towards this distribution from an arbitrary starting 
distribution is clearly not modelled in this simple approach.  Nor can the 
approach deal with bimodal or more complex size distributions.  A 
bimodal size distribution is quite likely, for example, when precipitation 
occurs in a polycrystalline matrix.  In that case larger precipitates are 
expected on the grain boundaries (especially at junctions), and finer 
precipitates in grain interiors.  The spatial distribution of these precipitates 
is also not random, as there are likely to be zones around the large particles 
in which the population of small particles is depleted.  A full model could 
also take account of spatially varying temperature or overall matrix solute 
content, such as are likely to arise in real alloys under real processing. 
               [15%] 
 
 
 
3. 
 
(a)  Boundary conditions:  Sides of bar (and remote end in FE analysis): 
thermally insulated. Quenched end:  perfect heat transfer (T = ambient, for 
all t>0). Initial temperature uniform along the bar. Number and type of 
elements: 20 linear elements (although 2 to 5 quadratic elements also fine)
                    [20%] 
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(b)  Log-log plot of FE results: 

x (mm) dT/dt  
(K/s) 

log (x) log 
(dT/dt) 

2 631 0.301 2.80 
5 100 0.700 2.00 
10 25.1 1.00 1.40 
20 6.31 1.301 0.80 
40 2.24 1.602 0.35 
80 1.26 1.903 0.10 
120 1 2.079 0.00 

 

Jominy cooling rate, perfect quench
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From the analytical solution, expected slope on log-log plot is -2.   FE data 
has correct slope towards the quenched end, but deviates to faster cooling 
rates than expected from an extrapolation of this slope, towards the remote 
end of the bar.   This is because the real bar (and the FE solution) have a 
finite length, whereas the analytical solution is for a semi-infinite solid.  
Near the quenched end the discrepancy is negligible, but at the remote end 
the FE cools faster than the analytical, since heat continues to enter the bar 
at x=120mm in the analytical solution, which is not the case in practice 
(retarding the cooling rate).                  [50%] 
(c)  Hence the line of slope -2 should be fitted to the FE data at the 
quenched end.  Solving for the constant C, e.g. by plugging in the data for 
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x = 5mm, as there is no scatter in the initial linear part of the FE data:  C =  
2.5×103 mm2s/K (note units must be consistent with data).     [30%] 
 
 
 
4. 
 
Regression analysis is most frequently used in circumstances where the 
physical relationship between the input and output variables is not know. 
With linear regression, one begins at the outset with the assumption that 
the relationship will be linear or pseudo–linear (i.e., contain additive 
terms).         [20%] 
 
 By contrast, a neural network makes no such assumption but is able to 
capture complex, non–linear relationships and interdependencies between 
variables. This is because any number of hyperbolic tangents (or other 
transfer functions) can be combined to capture the complex patterns in the 
data.           [20%] 
 
In a linear regression method, once established, a regression equation and 
its associated straight line applies across the entire domain of data. There 
are many circumstances in which the dependence of the output on a 
particular input may be quite different in different regions of the input 
space. For example, the strength of steel increases with carbon 
concentration, but beyond the point where graphite precipitates, it can lead 
to a major reduction in tensile strength.     [20%] 
 
A neural network is sufficiently flexible to capture such changes in 
behaviour and to fit the mathematical function appropriately. In linear 
regression, dependencies between variables have to be expressed at the 
outset, for example by writing y = w1x1 + w2x2 + w12x1x2, where the wi are 
coefficients derived by fitting and xi the input variables. The third term is 
clearly an arbitrarily constructed dependency which may or may not be 
justified.          [20%] 
 
Neural networks on the other hand capture the dependencies from the data 
since a function does not need to be defined at the beginning of the 
analysis – it’s form is an outcome of the analysis.   [20%] 
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5.  
 
Denoting time derivatives by the usual convention of dots above the 
characters, then the Lagrangian for a standard Hamiltonian system can be 
written as 

    L =
1

2
mi

i

N

! ˙ x i
2
" V( xi ) 

 
 
where ˙ x i  are the particle velocities, xi the particle positions and mi the 
masses. V(xi) is a scalar potential which is a function of the particle 
positions only. Substituting L into the Euler-Lagrange equations, one 
obtains: 
   !L

!˙ x i

= mi
˙ x i            

!L

!xi

= "
!V

!xi

 

 
  !

d

dt

"L

"˙ x i

#
"L

"xi

=
d

dt
(mi

˙ x i ) +
"V

"xi

= 0 

 
  !

d

dt
(mi

˙ x i ) = "
#V

#xi

 

 
 
which is the usual form of Newton’s second law, with rate of change of 
momentum on LHS, and force on the RHS. 

 
[30%] 

 
If L is augmented by an extra coordinate ζ, which evolves in time so as to 
minimise the difference between the instantaneous kinetic and statistical 
temperatures, TK and TS respectively, then TS becomes a parameter of the 
simulation and TK fluctuates. This is the basis of the Nosé-Hoover 
thermostatting method for producing molecular dynamics trajectories in 
the canonical ensemble. 
 
The kinetic temperature is defined by averaging over all kinetic degrees of 
freedom, i.e.: 
 
1

2
mi

i

N

! ˙ x i
2
=

3NkBTK

2
 by equipartition, which will fluctuate in equilibrium by 

definition. 
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The statistical temperature is defined from the Boltzmann distribution of 
microstate occupancies once equilibrium has been obtained, i.e.: 
 
pi =

exp(!Ei / kBTS )

exp(!Ei / kBTS)
i

"
, which should be constant at equilibrium by 

definition. 
 
The other terms in the Nosé-Hoover equations of motion are the particle 
velocities ˙ r , momenta p

i
, rates of change of momenta ˙ p 

i
 and forces Fi . 

The parameter τT is known as the thermostat relaxation time, and has units 
of time. It controls the rate at which energy can flow back and forth from 
the thermostat reservoir to the system. Its value must be chosen carefully 
to ensure that a stable equilibrium temperature is evolved, and that the 
system remains ergodic. This can be checked by plotting the kinetic 
temperature as a function of time. If the system is overdamped, then TK 
will converge only slowly on TS resulting in an inefficient thermostat. If 
the system is underdamped, then TK will oscillate about TS, resulting in a 
loss of ergodicity. The typical range of τT for critical damping is between 
0.5 to 2 ps, but this depends very much on the system being simulated. It is 
also a good idea to check the residuals of TK about TS. These should be 
Gaussian, and multimodal or highly skew distributions are a warning sign 
that the system is not ergodic. This is known to happen for very simple 
systems such as the harmonic oscillator, and can be ameliorated to a 
certain extent by chaining together thermostats with a spectrum of 
relaxation times. 
 

[50%] 
 

Hybrid MC/MD thermostatting schemes, such as the Andersen method 
which involves stochastic collisions between particles and a heat reservoir, 
produce a canonical NVT distribution and are also used instead of 
deterministic schemes like Nosé-Hoover. They have the advantages that 
they are usually quicker and more efficient at equilibrating than 
deterministic schemes, but the disadvantages that they can be difficult to 
combine with constraint dynamics (SHAKE) or dynamic perturbations like 
shear forces. Also, most implementations of Andersen’s method only cater 
for isotropically varying periodic cells, unlike the extended Lagrangian 
approaches that are easily generalized to anisotropic cell fluctuations. 
 

[20%] 
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SECTION C 
 
6. 
 
The figures below show that the relationship between thickness and time is 
parabolic, indicating that growth is diffusion-controlled. 

 
 
 

 
              [20%] 
The composition profile at the interface is illustrated below: 
 

  
              [20%] 
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The diffusion flux of solute towards the interface must equal the rate at 
which solute is incorporated in the precipitate so that: 
 

  C
!"
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where Δx is the diffusion distance in the matrix ahead of the interface 
assuming a constant gradient. A second equation can be derived by 
considering the overall conservation of mass: 
 
  C
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On combining these expressions to eliminate Δx we get: 
 

   !x*

!t
=
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#$( )

2

2x
*
C
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This can be integrated to show that x*2 ∝ t.    [40%] 
 
The approximations: assumes a constant concentration gradient, that the 
far-field composition Co remains constant, that diffusion is one-
dimensional, that the diffusion coefficient is composition independent. 
          [20%] 
 
 
7. 
 
When the pure phases are α and γ and in equilibrium their Gibbs free 
energies are equal: G! =G

" .      [10%] 
 
Consider α consisting of two components A and B. The free energy of α is 
a function of the mole fractions (1 - x) and x of A and B respectively: 
 
    G

! = (1" x)µ
A
+ xµ

B
 

  
where µA represents the mean free energy of a mole of A atoms in α. The 
term µ is called the chemical potential of A. Thus the free energy of a 
phase is simply the weighted mean of the free energies (chemical 
potentials) of its component atoms. 
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Consider now the coexistence of two phases α and γ in the binary alloy. 
They will only be in equilibrium with each other if the A atoms in α have 
the same free energy as the A atoms in γ, and if the same is true for the B 
atoms: 
      
     µ

A
! = µ

A

"  
     µ

B
! = µ

B

"  
 
The condition the chemical potential of each species of atom must be the 
same in all phases at equilibrium is general and justifies the common 
tangent construction as illustrated in the figure. Notice that the common 
tangent gives identical intercepts for both α and γ at x = 0 and 1 - x = 0. 
 

 
 

 
 
          [50%] 
 
When the solution consists of a random dispersion of atoms, the entropy of 
mixing is as given, 
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When a single cluster of t B–atoms forms, the number of B entities is 
reduced to n - t + 1, the +1 representing the single cluster. The entropy of 
mixing is then: 
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The change in entropy is therefore given by: 
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               [40%] 


