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 MODELLING OF MATERIALS (1) 
 

Answer six parts from Section A (i.e. Question 1), two questions from 
Section B, and one question from Section C. 
 
Each Section carries one-third of the total credit for this paper. 

 
 Write on one side of the paper only. 
  

The answer to each question must be tied up separately, with its own 
cover-sheet. All the parts of Question 1 should be tied together. 

 
Write the relevant question number in the square labelled ‘Section’ 
on each cover-sheet. Also, on each cover-sheet, list the numbers of 
all questions attempted from this paper. 

 
For questions divided into parts, the approximate fraction of credit 
allocated to each part is indicated by the percentages in square 
brackets. 

 
 
 Special and/or stationary requirements for this paper: graph paper 

You may not start to read the questions printed on 
the subsequent pages of this question paper until 
instructed that you may do so by the Invigilator. 
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SECTION A 
 

1. (a) Explain the difference between a model and a theory in materials 
science, giving some examples of each, and discuss briefly how 
together they can form a synergy with experimental observation. 

 
 (b) Describe briefly the ideas behind the Embedded Atom Method, 

including its physical origins, and state some of the advantages it 
has over other methods for simulating metallic systems. 

 
 (c) Briefly outline the experimental methods for the determination 

of phase diagrams. 
 
 (d) Show that if a material is in static equilibrium, σij = σji (i ≠ j) for 

any stress state imposed on the material. A particular stress state 
imposed upon a material can be written in the form 

 

! =

!11 !12 0

!12 !22 0

0 0 !33

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

 

 
  Find the three principal stresses of this stress state. 
 
 (e) TT, the transpose of the matrix T, is defined by 
        
       T

T( )
ij
= Tji  

 
Write a FORTRAN 77 subroutine tspose which is called with 
a 10 × 10 real array representing the matrix as its argument. 
When the subroutine returns, the argument array should have 
been changed to the transpose of the original matrix. 

 
(f) Distinguish between the crystalline and amorphous states of 

matter. Give two examples of crystalline and amorphous solids. 
Describe a method that can be used to make amorphous solids. 
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(g) By considering diffusion driven by a free energy gradient rather 

than by a concentration gradient, show that in a binary A-B 
solution: 

      
     DA = CAMA

!µA
!CA

 

  
 where for the solute A, DA is the diffusion coefficient, CA is the 

concentration, MA is the mobility and µA represents the chemical 
potential. Under what circumstances is it necessary to consider 
the free energy gradient as the driving force for diffusion? 

 
(h) Briefly discuss the construction of an artificial neural network in 

materials science. What are the advantages and disadvantages of 
using artificial neural networks compared to models based on 
physical laws? 

 
(i) Summarise the advantages and disadvantages of numerical and 

analytical solutions for the thermal analysis of manufacturing 
processes. 

 
 (j) Explain how the united atom approximation can be used to 

accelerate the simulation of long chain alkane molecules using a 
classical molecular dynamics approach. Compare and contrast 
this method with other dynamical simulation techniques for 
predicting the structure of crystalline and amorphous polymers. 
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SECTION B 
 
2. Describe the phenomenon of Ostwald ripening of precipitate particles 

in a matrix.  What is the practical significance of the ripening? 
                                                                                            [15%] 
  

What is the driving force for the ripening?  Use a sketch to illustrate 
the diffusional fluxes involved.  Explain why some particles shrink, 
even as the overall dispersion coarsens.  Sketch how the particle size 
distribution is expected to evolve with time.  

                                                                                             [25%] 
 
 Precipitates of β phase (composed of B atoms) are dispersed in a 

matrix of α phase (composed of A atoms with some B in solid 
solution).  The equilibrium concentration Xα(r) of B atoms in α at the 
interface with a spherical β particle of radius r is given by: 
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where γ is the α-β interfacial energy, Vm is the molar volume, R is the 
molar gas constant and T is temperature. From this, making clear the 
assumptions in your derivation, show that the average precipitate 
radius r increases with time t according to 
 
     r 

3
(t) ! r 

3
(0)" t  

              [30%] 
 
This analysis provides a basis for choosing a solute on which to base 
precipitation-hardening of a metal such that the rate of Ostwald 
ripening would be minimised. Which are the key parameters to 
consider? 
              [15%] 
Discuss how the assumptions in the above derivation may be 
restrictive, and explain briefly how a full microstructural model could 
cope with greater complexity. 
              [15%] 
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3. The analytical solution for the Jominy end-quench test may be used 

to find the cooling rate dT / dt , at a fixed reference temperature, as a 
function of the distance x from the quenched end.  The solution for 
the cooling rate is: 

 
dT

dt
= !

C

x
2

 

 
where C is a dimensional constant, which depends on the selected 
reference temperature. 

 
A finite element (FE) analysis was conducted with the same 
boundary conditions as for the analytical solution, but with a domain 
equal to the actual length of the sample, 120 mm.  Selected results 
from the FE analysis for the magnitude of the cooling rate at the same 
reference temperature are given in the table below. 
 

Distance from 
quenched end, x 

(mm) 

Cooling rate 
(K/s) 

2 631 
5 100 

10 25.1 
20 6.31 
40 2.24 
80 1.26 
120 1.0 

 
(a) State the boundary conditions for both analytical and FE 

analyses, and suggest a suitable number and type of element 
for the FE analysis.  

               [20%] 
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(b) Plot the FE results for cooling rate against distance from the 

quenched end on log-log scales, and compare the FE data 
with the behaviour predicted by the analytical solution.  
Explain the discrepancy between the two.  

              [50%] 
 
(c) Use your plot to find the value of the constant C, by fitting 

the analytical result to the FE solution where appropriate. 
                [30%] 

 
 
 

4. Compare and contrast the linear regression method with general 
neural network analysis. Your answer should include a full 
description of both techniques and some examples of their 
application. 

              [100%] 
 
 
5. Write down an expression for the Lagrangian, L, of a collection of N 

particles, expressed as the difference of their kinetic and potential 
energies. Show that Newton’s second law of motion follows from 
substituting L into the Euler-Lagrange equation: 

 
     d

dt

!L

!˙ x i
"
!L

!xi

= 0  

               [30%] 
 
 If L is augmented by an extra co-ordinate ς, which evolves in time so 

as to minimise the difference between the instantaneous kinetic and 
statistical temperatures, TK and TS respectively, then the modified 
equations of motion become: 

  
     ˙ r i = p

i
/ mi  

     ˙ p 
i
= Fi ! " p

i
 

     ˙ ! =
1

"T
2 TK(t) /TS #1{ }  
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Define carefully each of the terms in the above equations, and explain 
the significance of the parameter τT. Describe in practical terms how 
to choose τT in order to obtain the most efficient sampling of states 
from a constant temperature molecular dynamics simulation. What is 
the conserved quantity of the resulting ensemble? 
               [50%] 
 
What advantages and disadvantages does the deterministic scheme 
above have over stochastic methods for regulating temperature in 
molecular dynamics simulations? 

                [20%]
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SECTION C 
 
6. Layers of solute-rich β phase are found to thicken as a function of 

time during isothermal transformation from α. Using the data given 
in the table below, assess what the rate-controlling process is for the 
motion of the β/α interface. 

     
Thickness of β layer  /  µm Time  /  s 

0 0 
0.47 2 
0.64 4 
0.90 8 
1.28 16 

 
             [20%] 
 

Illustrate the distribution of solute ahead of the transformation 
interface, marking on your diagrams the equilibrium compositions of 
the parent and product phases (Cαβ and Cβα respectively) and the 
average composition C0. 

             [20%] 
 
 One of the conditions for the diffusion-controlled growth of β is that 

 

    C
!" #C"!( )$x

*

$t
= D

$C

$x
x= x

*

 

 
where D is the diffusivity of the solute in the matrix, t is time and x is 
a co-ordinate normal to the interface. x* represents the position of the 
interface, where the concentration gradient is evaluated. 

 
Explain the origin of the equation and derive the relationship between 
x* and t. Identify any approximations or assumptions that you make. 
 
              [60%] 
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7. Describe the condition for thermodynamic equilibrium between two 

pure phases. 
                [10%] 
 

What is meant by the term chemical potential and how is this concept 
used in describing equilibrium between solutions? Illustrate how this 
justifies the common tangent construction which is used to find the 
equilibrium compositions of phases in contact. 
            [50%] 
 
A binary solid-solution contains a random dispersion of n B-atoms 
and N ! n A-atoms. When N is set to equal Avogadro’s number, the 
molar configurational entropy of mixing is given by: 

 
   !SM = "kN (1" x) ln 1" x{ }+ x ln x{ }[ ] 
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where k is the Boltzmann constant and x is the mole fraction of B 
atoms. During a nucleation event, a cluster of t B-atoms forms. Show 
that the change in configurational entropy when a single such cluster 
forms in this otherwise random solution is 

   
     !S " k(t #1)ln x{ }  
             [40%] 
 

 
 
 

END OF PAPER 
 


