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MASTER OF PHILOSOPHY  Modelling of Materials (2005) 
 
Examiner’s Solutions to Paper 2 
 
SECTION A 
 
1(a) 
 
Integer variables hold integer (whole number) quantities precisely, 
within a certain range. Thus an integer value will always be identical 
regardless of the calculation which produced it (ignoring overflow and 
truncation). Integers are used as subscripts for arrays, and as loop 
counters (the inaccuracies associated with real variables make these 
unsuitable for loops with many iterations). 
Real variables hold values (which need not be integers) approximately. 
Once again, the values must lie within a certain range; but this range is 
much wider than the range for integers. The machine epsilon gives an 
indication of the accuracy to which such values are held: this is smallest 
quantity ε such that 1.0 + ε .ne. 1.0 when evaluated by the 
computer. Real variables do not have sufficient accuracy for all 
calculations (especially for ill-conditioned problems), but are often more 
than adequate for many (such as the plotting of graphs).  
Double precision variables hold similar values to real variables, possibly 
with a larger range. However, the machine epsilon will be much smaller 
than for real variables; double precision values are typically held to twice 
as many digits of accuracy as real ones. Double precision variables 
require much more store than real ones (typically twice as much), and 
calculations on double precision values normally require longer than 
calculations on reals.  
 
 
1(b) 
 
The exchange energy is due to the Pauli exclusion principle, which 
automatically keeps electrons of parallel spin out of each others way, 
irrespective of their mutual repulsion. Because of the Coulomb repulsion 
between electrons, this effectively reduces the total energy of the system 
by what is called exchange energy. Correlation energy is the additional 
amount by which the energy is reduced due to the effect of the Coulomb 
repulsion further separating the electrons, in particular the ones with 
opposite spin.  
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The Local Density Approximation assumes that the exchange -correlation 
energy density at a particular point depends only upon the particle density 
at that point. 
The c-planes are held to together by Van der Waals forces which are 
extremely weak, and are caused by instantaneous dipoles in the electron 
distributions of the planes. This is essentially electron correlation, which 
we have approximated crudely by the LDA, so the results are not very 
accurate (bonding is overestimated). In contrast the in-plane bonding is 
strong and dominated by the Hartree and kinetic energy terms, so that the 
errors due to the LDA are proportionally less. 
 
 
1(c) 
 
The lattice type is cubic-F, with a motif of S at (0,0,0) and Li at 
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1(d) 
 
In the case of electrical current, the flux is the current, and the force is the 
e.m.f. = ! "#

"z
 (potential gradient). 

In heat flux, the force is ! 1
T

"T

"z
 and there is flux of heat. 

In diffusion, the force is the chemical potential gradient ! "µi
"z

 and the flux 

is that of matter. Note that it would be wrong to say that the force in this 
case is the concentration gradient. 
    
 
1(e) 
 
For a case where a thin layer of a fixed quantity of solute is plated onto a 
semi-infinite bar, a solution consistent with Fick’s laws and the boundary 
conditions is 
 
boundary conditions :       C x,t{ }

0

!
" dx = B     and    C x, t = 0{ } = 0  
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    C x,t{ } =
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This is a specific exponential function known as a Gaussian function. 
Now imagine that we create the diffusion couple, by stacking an infinite 
set of thin sources on one end of a semi-infinite bar of a different 
composition.  Diffusion can then be treated by taking a whole set of 
exponential functions as above, each representing a thin layer but slightly 
displaced along the x-axis. This series of stacked exponential sources can 
then be summed (integrated) to find the net interdiffusion profile. The 
integral is in fact the error function, an integration of exponential sources 
 
   erf x{ } =

2

x
exp !u2{ }0

x
" du 

 
 
1(f) 
 
Design requirements for which generic attributes can usefully be stored in 
a selection database of shaping processes: 
 
Technical:   
material to be shaped – list of viable materials 
product size or weight – numeric ranges 
component shape and geometry – list of viable shapes/geometries 
manufacturing constraints – searchable text 
 
Quality: 
Surface finish – numeric range 
Dimensional precision – numeric range 
 
Examples of quality requirements which do not fit this approach: 
Avoidance of defects, and final product properties 
Generic ranges would be very broad and non-discriminating – the extent 
of defects and the product properties depend in a complex, coupled way 
on the type of process variant (casting, forging etc), on the material being 
processed (Fe, Al, Cu etc) and on design details (such as component size, 
which affects things like cooling rates).   A good way to approach this 
complexity, within a narrower domain of processing, is to build process 
models which capture the coupling between processing outcome and 
process, material and design. 
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1(g) 
 
Intrinsic is used to describe those properties insensitive to microstructure.  
Examples are the elastic properties, dependent rather directly on 
interatomic potentials. 
 
Extrinsic is used to describe those properties sensitive to microstructure.  
An example is the yield stress, which involves the motion of dislocations, 
and may depend on grain size, precipitate distribution or dislocation 
density. 
 
Intrinsic properties are appropriately modelled at the atomic level.  
Extrinsic properties typically need modelling at greater length scales, 
sufficient to permit a description of the distribution of microstructural 
features. 
 
 
1(h) 
 
The sporadic appearance of a new phase within a uniform original phase 
as a result of thermal fluctuations constitutes homogeneous nucleation.  
When the original phase is non-uniform in some way (because of its 
surface, grain boundaries, dislocations or other phases within it), these 
heterogeneities are likely to be preferred sites for nucleation of the new 
phase;  this is heterogeneous nucleation. 
 
For the detection of  homogeneous nucleation, the influence of 
heterogeneities must be limited.  For solidification, for example, the 
liquid can be dispersed as an emulsion in another, inert liquid.  It is 
possible to make the emulsion finer and finer, so that eventually the 
number of droplets of the liquid exceeds the number of heterogeneous 
particles originally present in the liquid.  There must then be a population 
of droplets in which there are no particles, and in which the nucleation of 
solidification can be expected to be homogeneous.  (This assumes that the 
liquid-liquid interface is not itself a potent substrate for heterogeneous 
nucleation.) 
 
The rate depends on the atomic mobility, the thermodynamic driving 
force for transformation, and the energy per unit area γ of the interface 
between the original and new phases.  The first two can be estimated or 
measured to good accuracy, but γ is rarely known well.  Unfortunately, 
the nucleation rate is particularly sensitive to γ, as the critical work of 
nucleus formation is proportional to γ3. 
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In modelling heterogeneous nucleation, the interactions with the nucleant 
substrates need to be taken into account, introducing further uncertainties.  
The potency of a substrate is commonly described in terms of the contact 
angle θ of the new phase on the substrate.  Unfortunately, θ is mostly not 
known, and it may show some dispersion of values.  The population, 
dispersion and size distribution of the nucleant substrates are also likely 
to be imperfectly known at best. 
 
 
1(i) 
 
Flow through volume element in pipe   dV = 2!r.".dr  
 

L

2R

L

2R

 
 
and we are told that 
    ! =

"p

4L#
R2 $ r2( ) 

 
for a Newtonian fluid (laminar flow) and so substituting and integrating 
over the radius 
 
   dV =

!

2L"
#p R2r $ r3( )dr  

 

we get  V =
!R4

8L"
#p  

 
Since most thermoplastic polymers are shear thinning (due to chain 
alignment in shear field) then the viscosity would be a decreasing 
function of the shear rate at any point in the tube. The changes in flow 
profile are shown qualitatively below, but result in a net increase in 
volume flow rate if all other parameters remain fixed. 
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1(j) 
 
The term molecular chaos refers to the fact that molecular dynamics 
trajectories calculated to finite numerical precision will diverge from the 
true continuous trajectories at an exponential rate, irrespective of the 
precision of the numerical algorithms used to perform the integration. 
This can be demonstrated by dropping a perfectly elastic sphere directly 
onto a fixed elastic sphere, and simulating the bouncing motion under 
gravity. Analytic solution of the equations of motion yields a solution that 
predicts an infinite number of bounces, however all numerical 
simulations will only produce a finite number due to the exponential 
accumulation of integration errors. However, molecular chaos is not a 
significant problem in most molecular dynamics simulations because the 
desired objective is not to predict the exact molecular conformation at 
some point in the future, but instead to compute thermodynamic 
properties of the system that depend on ensemble properties that are not 
sensitive to the exact future state of the system. In other words, the MD 
simulations are used to study ensemble average quantities at a particular 
thermodynamic state point, and therefore it is irrelevant which particular 
microstate the system is in provided it does not deviate systematically 
from the desired thermodynamic macrostate. The latter condition is 
guaranteed by ensuring that the Hamiltonian of the extended system is 
conserved by the equations of motion. 
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SECTION B 
 
2. 
 
Answer relies on the fact (which need not be proved) that the number of 
allowed electron states in a band is 2N where N is the number of 
primitive unit cells in the solid. This is an even number, therefore solids 
with one electron per primitive unit cell will have half filled bands and 
will be conductors. On the other hand, solids with two electrons per 
primitive unit cell will have full bands and will normally be insulators. 
However, if the band gap is small then at finite temperatures these solids 
could also be semiconductors. In addition if the band structure is 
anisotropic and there is band overlap then the solid would be 
semimetallic (small overlap) or conducting if the overlap is large. 
 
             [25%] 
 
 
(i) Brillouin zones 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          [25%] 
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(ii) E(k) along [100] and [110] for free electrons (parabolic) 
 

 
 
              [15%] 

(iii) For free electrons 
  

E(k) =
h
2
k
2

2m
 

 

 Along [100] at the 1st BZ boundary 
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 Along [110] at the 1st BZ boundary 
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 (=E2 say) 

              [15%] 
(iv) When there are electron-ion interactions energy gaps appear at the 
Brillouin zone boundaries. This is due to Bragg reflection at these planes. 
The electron travelling waves turn into standing waves at these special 
values of k and these standing waves have two different energies, one 
larger and one smaller than the free electron value. These energies split 
symmetrically about the free electron energy and together constitute an 
energy gap.  If the energy gap at the 1st BZ boundary is Eg then the E(k) 
curves may look like this: 
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          [15%] 
 
For the solid to be a semiconductor E(B) must be slightly lower than E(A) 
otherwise there would be no overall band gap. 
 
E(A) = E1 + Eg/2  and  E(B) = E2 – Eg/2 
 
 
 
 In the limit when E(A) = E(B)  E1 + Eg/2  =  E2 – Eg/2  
 

     i.e.  
  

Eg = E2 ! E1 =
h
2"2

2ma
2

 

 
This is the minimum energy gap at the 1st BZ boundary for the solid to be 
a semiconductor. Smaller energy gaps would result in a conductor. 
            [15%] 
 
3. 
 
Calculation of solidus and liquidus line for an ideal solution. 
 
 
For an ideal solution !G(l)

M
= RT XA ln XA + XB ln XB( ) 

    !G(s)
M
= RT XA lnXA + XB ln XB( ) 
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However, if these are plotted out the curves would be coincident due to 
the fact that the starting conditions are not the same. i.e 
 
   xA(s) + yB(s) = AxBy (s)   (1) 
  and xA(l) + yB(l) = AxBy(l)   (2) 
 
Consider equation (1) 
  xA(s) + yB(s) = AxBy (s)  !G

M
= RT XA ln XA + XB ln XB( ) 

   

By adding the reaction xA(l) = xA(s)   !G = "x !H f (A) "
T!Hf (A)

Tf (A )

# 

$ 

% 
% 

& 

' 

( 
(  

 
gives xA(l) + yB(s) = AxBy (s)

 !GM = RT XA ln XA + XB ln XB( ) " x !H f (A) "
T!Hf (A)

Tf (A)

# 

$ 

% 
% 

& 

' 

( 
(  

 
Similarly for equation (2) 
  xA(l) + yB(l) = AxBy(l)  !G

M
= RT XA ln XA + XB ln XB( ) 

 

By adding the reaction yB(s) = yB(l)  !G = y !Hf (B) "
T!Hf (B)

Tf (B)

# 

$ 

% 
% 

& 

' 

( 
(  

 
Gives xA(l) + yB(s) = AxBy (l)  

!GM = RT XA ln XA + XB ln XB( ) + y !Hf (B) "
T!Hf (B)

Tf (B)

# 

$ 

% 
% 

& 

' 

( 
(  

 
As both equations relate to the same starting conditions it is now possible 
to draw the curves and tangents to obtain the position of the liquidus and 
solidus. 

 
           [70%] 
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On cooling the enthalpy contribution to the free energy curve increases as 
it is almost independent of temperature whereas the entropy term 
contribution is very temperature dependent.  When the enthalpy term 
predominates the free energy curve undergoes changes in curvature and 
the solid solution breaks down either by a nucleation and growth or 
spinodal mechanism.  This can be drawn schematically. 
             [30%] 
 
 
4. 

 
(a)   Mass of panel: m = bld!  

Failure when max stress = material strength: ! y =
3Wl

2bd2
 

Hence free variable, depth, given by: d =
3Wl

2b! y

" 

# 

$ 
$ 

% 

& 

' 
' 

1 /2

 

Substituting into equation for mass: m = bl!
3Wl

2b" y

# 

$ 

% 
% 

& 

' 

( 
( 

1/ 2

= constant
!
"
y

 

Hence minimise mass by maximising performance index.M =
! y

"
 

            [25%] 
(b)  Thickness and strength related by: ! y =

3Wl

2bd2
 

Hence maximum allowable thickness converts to a minimum allowable 
strength (depending on values for load, length, width and max. thickness) 
            [25%] 
(c)   On property chart, minimum allowable strength is a horizontal line 
(search above this line);  and performance index is a line of slope 2 
(guideline of correct slope indicated on the figure).   Move performance 
line up to the left to leave short-list of remaining materials. 
            [25%] 
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(d) Selection results 
 
Material Comments 
Ceramics (alumina etc) Disregard – data for compressive 

strength 
CFRP The best, but expensive 
Mg alloys The best of the metals 
GFRP, Al alloys, Al-SiC Lower cost alternatives 
Ti alloys More expensive alternative 
Wood, higher strength 
polymers 

May be below strength limit (i.e. need to 
be to thick), but would be low cost 

 
              [25%] 
 
 
 
 
 
 

e.g. strength limit 

Performance index, leaving 
possible materials above line 
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5.  
 
Answer should include the following: 
 
A definition of “mesoscale” and mesoscale modelling. Although the term 
mesoscale is often used in a loose sense to refer to time and length scales 
intermediate between the microscopic and the macroscopic levels, it can 
be defined more precisely as any intermediate scale at which the 
phenomena at the next level down can be regarded as always having 
equilibrated, and at which new phenomena emerge with their own 
relaxation times. A classical example is Brownian motion and a good 
answer will briefly review this phenomenon in order to illustrate he 
general principle of mesoscale simulations: that any irrelevant degrees of 
freedom are integrated out, leaving the remainder to vary in the resulting 
equilibrated mean field. The definition of mesoscale modelling could also 
include a sketch of the spatio-temporal hierarchy of modelling 
techniques, showing the mesoscale bridging the gap between atomistic 
and continuum levels.           [25%] 
A description of the different sub components of mesoscale modelling: 
coarse-graining, parameterisation and construction of the model. Coarse-
graining involves discarding as many degrees of freedom as possible 
from a system, whilst retaining universal features. Coarse-graining (either 
spatially or temporally) is a regressive process and is continued until a 
level of description is reached appropriate to the phenomena of interest. 
Reference to coarse-grained structural models for polymers would 
usefully illustrate the process. Parameterisation is a way of representing 
lost degrees of freedom. Construction of the model may be done by using 
either lattice mesoscale methods, particle based mesoscale methods or 
within a continuum framework. Each method could be illustrated with 
specific techniques, e.g lattice gas automata, lattice director models, 
lattice chain models, Brownian and Stokesian dynamics, and dissipative 
particle dynamics.                  [45%] 
A list of areas of use: modelling hydrodynamic flow; long time scale 
phase segregation or transformation; processing of polymer melts; 
prediction of bulk mechanical properties to parameterise finite element 
simulations.              [15%] 
Mesoscale modelling packages: Mesodyn (dynamic mass DFT code), 
DPD (dissipative particle dynamics code), Lattice chain model 
(polymers).              [15%] 
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SECTION C 
 
 
6. 
 
In general, the partition function for a single rotor is defined by the sum 
of Boltzmann factors over all microstates, with each state having 
degeneracy of one: 

   
  

Z1 = exp(!"EJ
J

# ) = exp !
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2
J
2

2I
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0

*

+ dJ  

 
Hence, the partition function of a system of N indistinguishable, non-
interacting rotors is: 
 

 
  

ZN =
1

N!
Z1( )N =

1

N!
exp !
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1
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2
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 [20%] 

 
The Helmholtz free energy of the system is defined in terms of the total 
partition function as: 
 

 
  

F = !kBT ln Z = !kBT ln
1

N!

"I

2#h
2
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& & 

' 
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Hence, using Stirling’s approximation (justified as N is very large): 
 

 
  

F = !kBT
N

2
ln

"I

2#h2

$ 
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' 

( 
) ) ! ln N!
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=
NkBT

2
ln
2!h2e2

I"N2
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The total internal energy of the system is defined in terms of the partition 
function as: 
 

 
  

U = !
1

Z

"Z

"#
= !N!

$I

2#h
2

% 
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' ' 
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* * 

!N / 2

.
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.
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.
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U =
N

2
.

!I

2"2h2
.

!I
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2

# 

$ 
% % 
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' 
( ( 

)1

=
N

2
.

!I

2"2h2
.
2"h2

!I
 

 
  =

N

2!
 

 
which is directly proportional to system size and has the correct units. 
 
Hence, the isovolumetric heat capacity can be calculated as 
 

  CV =
!U

!T

" 

# 
$ 

% 

& 
' 
V

=
!

!T

N

2(

" 

# 
$ $ 

% 

& 
' ' 
V

=
NkB

2
 

 
which corresponds exactly to the classical result expected from 
equipartition for a two dimensional rotor with one angular degree of 
freedom. We have assumed that the temperature is sufficiently high 
enough for all the rotational states to be excited. 

 [50%] 
 
If the system of rotors is coupled by some long-ranged potential (pairwise 
acting, or otherwise) then the standard statistical mechanics approach of 
computing thermodynamic properties analytically via the partition 
function will become intractable. This is due to the difficulty of 
factorizing the total partition function ZN in terms of the single rotor 
partition function Z1, which is only straightforward for non-interacting 
systems of indistinguishable particles where ZN =

1

N!
Z1( )N . 

An alternative approach can be used, which depends on statistical 
sampling of the thermodynamic states of the system weighted by their 
Boltzmann probabilities. A suitable computational method for a system at 
constant volume and temperature is the Metropolis Monte Carlo (MMC) 
algorithm. We will make the simplifying assumptions that the system of 
N rotors is confined to a two-dimensional square lattice with periodic 



 16 

boundary conditions and one rotor per site, and that the total energy can 
be calculated as a function of all the rotational quantum numbers 
EN(J1,J2,…JN). It may be that the energy is only a more local function of 
rotational states, or that a lattice sum (Ewald) method can be used to 
speed up the calculation, but this is not necessary. 
 
The simulation then proceeds as follows: 
 

1. Start with system in arbitrarily chosen state µ and evaluate the 
internal energy µE  

2. Generate a new state ν by a small ergodic perturbation to state µ 
and evaluate !E  

3. If 0<! µ" EE , then accept the new state. If 0>! µ" EE , then accept 
the new state with probability exp[-β(Eν - Eµ)] 

4. Return to step 2 and repeat until equilibrium is achieved (i.e. total 
energy has converged to steady-state value when averaged over all 
sampled configurations). 

 
A suitable initialization condition might be with all rotors set to J = 0 (T 
= 0 K). A suitable ergodic perturbation in step 2 might be changing the 
rotational quantum number of a randomly selected lattice site by ±1, 
provided J ≥ 0. However, there are many other choices that would result 
in a more efficient simulation. 
 
Once an equilibrated simulation has been generated, then the partition 
function can be computed by thermodynamically integrating along a 
pathway from T = T1 to T2. 
 

  U = !
1

Z

"Z

"#
= !

"(lnZ )

"#
   $Z = exp ! U(T).d#

T1

T2

%
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+ 
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[30%] 
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7. 
 
Bonding characteristics of ionic solids: 
 
Bonding results from electrostatic interactions between oppositely 
charged ions ±q2/r (long range, pairwise, attraction and repulsion). Alkali 
halides or I-VII compounds are typical. 
 
Valence electron distributions are spherical, highly localised and similar 
to that of free atoms. However, electron transfer occurs between atoms to 
form complete electron shells. This leaves the solid composed of 
positively and negatively charged ions. In the case of KCl, for example, 
one of the valence electrons on the K atom transfers to the Cl atom giving 
both atoms18 electrons but leaving K positively charged and Cl 
negatively charged. The spherical nature of the valence electron 
distribution means that to a good approximation the interatomic potentials 
will be spherically symmetric (i.e. radial and pairwise) and will be 
dominated by the 1/r Coulombic interaction. Illustration of a I-VII 
compound should show spherical distributions and charge transfer. 
 
The transition from I-VII compounds to II-VI compounds and then to III-
V and IV-IV compounds progressively leads to increasing covalency. 
Atoms become more and more difficult to ionize. Electron distributions 
become less spherical and electrons become more delocalised in the 
interstitial regions of the crystals. This is typically along near neighbour 
directions resulting in bond formation. So, for example, the electron 
concentration along near neighbour lines in a group IV compound may be 
5 e/Å3 compared to only 0.1 e/Å3 in a I-VII compound. In II-VI and III-V 
compounds there may be some residual charge about the ion cores. 
Illustrations of charge distributions should reflect these changes in 
symmetry and distribution.       
             [25%] 
 
The Madelung constant is the coefficient of the electrostatic energy of an 
ionic crystal. It is a lattice summation which depends on the structure of 
the crystal. Since the electrostatic energy falls off slowly with distance 
(1/r) the summation is not well defined for an infinite crystal. It is 
conditionally convergent and will depend on the order of the summation. 
However, there are ways to circumvent this (e.g. considering electrically 
neutral cells) and convergent sums can be obtained. In three dimensions 
this usually requires a computer. Defined with respect to the nearest 
neighbour distance R, the Madelung constant α is given by 
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     !

R
=

(±)

rjj

"  

 
where rj is the distance from the jth ion to a reference ion. If the reference 
ion is negatively charged then the + sign applies to positively charged 
ions in the summation and the – sign to negatively charged ions. The 
electrostatic energy is therefore given by: 
 

     Ue (R) = !
"q2

4#$oR
  (per ion pair) 

 
The electrostatic energy is the dominant contribution to the total energy 
but overestimates the binding since it ignores the positive potential due to 
short-range core-core repulsion. This is typically represented by an 
inverse power law or a Born-Mayer exponential function. So, for 
example, the total energy per ion pair could be written: 
 

     U(R) = !
"q2

4#$oR
+ %e

!R / &  

 
           
              [25%] 
 
For the one-dimensional crystal consisting of 2N ions (N molecules) with 
an inverse power repulsive term the total energy is given by: 
 
  U(R) = N Uij

j

!  (i≠j,  where i is the reference ion) 

 

where  Uij = !
q2

4"#o R
+
A

R
n   (nearest neighbours) 

 

or  Uij = ±
q2

4!"orij
  (otherwise) 

 
Therefore: 
 

    U(R) = N !
"q2

4#$oR
+
A

R
n
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            [25%] 
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At the equilibrium separation Ro,   dU/dR = 0   
 
Thus: 
 

    dU

dR
= N

!q2

4"#oR
2
$

nA

R
n$1

% 
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' 
' 

( 

) 
* 
* = 0   

 

   i.e  A

Ro
n =

!q2

4"#onRo
 

 
Thus the total energy at equilibrium is: 
 
     

   U(Ro ) = N !
"q2
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For the one-dimensional crystal choosing a negative ion to be the 
reference: 
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number of neighbours) 
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= 2ln 2  using the given expansion for 

ln(1+x) 
 
Thus finally: 
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