
MASTER OF PHILOSOPHY  Modelling of Materials 
 
Examiners’ Solutions to Paper 1 
 
SECTION A 
 
1(a) 
 
A Bravais lattice is an infinitely repeating set of points related by 
translational symmetry, i.e. each lattice point has an identical environment. 
The motif is the element of structure associated with each lattice point. The 
conventional unit cell is oriented in a specific way to the symmetry 
elements of a crystal, and may or may not be primitive. 
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Projection of diamond structure onto (100) 

 
Rotational symmetry about [100] axis through carbons is of order 2 (diad). 
 
1(b) 
 
The embedded atom model is an empirical implementation of effective 
medium theory. 
 
The total energy of a metal is written as the sum of two terms: 
 

Utot  =  UA  + UR 
 
where UA  = the energy (attractive) required to embed an atom into the 
density ρ of the neighbouring atoms where ρ is taken to be the 
superposition of atomic charge densities ρ A 



 
UA = F(ρi

i
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i ij
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and UR  = the repulsive overlap energy between atom cores (taken to be a 
pair potential) 
 
 UR =

1
2 φ(rij)

ij
∑  

 
The exact form of F(ρi ) is not known but various functions such as power 
laws and exponentials are used. It is fitted to match the bulk properties of 
the metal (lattice parameters etc). 
 
In general F(ρi) is a non-linear function of ρ  and is concave negative. 
    
      
 
 
 
 
 
 
This shape reflects the fact that the energy/atom in a crystal decreases non-
linearly with increasing co-ordination Z 

 

 

 

 

 

 

 

 

 
 
 
  
In fact tight-binding theory predicts that the energy/atom is proportional to 
–√Z. Finnis and Sinclair used this result in their formulation of the 
embedded atom method by requiring F(ρi) to have a square root form. 
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1(c) 
 
The distinction between deterministic and stochastic models is based on 
whether they are probabilistic in nature or not. Deterministic models use 
algebraic or differential equations to model system evolution in an 
unambiguous and reproducible manner. In other words the system outputs 
are causally connected to the system inputs. Molecular dynamics is given 
as an example. In some cases, deterministic models can be unpredictable. 
This may happen if the system dynamics is nonlinear, if a large number of 
inputs are needed, if the inputs are needed with unrealistically high 
precision and if the model’s stability depends on intermediate calculations. 
For example, weather forecasting is in principle deterministic but 
unpredictable in practice. Stochastic models incorporate probabilistic 
steps, especially in the way structures evolve. They were originally 
designed to simulate canonical ensembles by performing a large number of 
iterative steps using random numbers. Monte Carlo is given as an example.  
In this method the system evolves via a statistical sampling process 
following a Boltzmann distribution. A given configuration depends only 
on the previous configuration in the sequence. When the outcome of a 
random event depends only on the outcome of a immediately previous 
event, the sequence of structures generated is called a Markov chain. In 
this sense the method is unpredictable but it is known that average 
properties generated by deterministic and stochastic models should be 
same (Ergodic hypothesis). Some models are hybrid in character, having 
both deterministic and stochastic features (e.g. Brownian dynamics). 
 
1(d) 
 
“Eco selection” is systematic procedure for selecting materials to minimise 
environmental burden caused by engineering applications, taking in to 
account the production, the use and the disposal phases. Legislation on the 
need to disclose the use of energy and CO2 emissions for manufactured 
items is increasing.  The expenditure of energy can be modelled by 
considering four major steps:  

(i) material production; 
(ii) object manufacture and delivery; 
(iii) object usage; 
(iv) object disposal (including recycling). 

By understanding where energy is expended, it then is possible to refine 
the manufacturing of objects to reduce its usage and, similarly, CO2 
emissions. 



 

 
Students expected to comment on the need then to target specific steps in 
order to improve energy accountability. 
 
 
1(e) 
 

1(f) 
 
Quantum mechanical tunnelling is when a particle passes through a region 
where the potential energy V > E, i.e. a region which would be forbidden 
classically. The answer should include a brief discussion of two of the 
following: 

(i) alpha-particle decay 

(ii) field emission 

(iii)  scanning tunnelling microscopy (STM) 



1(g) 
 
Thermal importance sampling means that the thermodynamic microstates 
of a system are not sampled uniformly, but with a probability pi that 
depends on their Boltzmann factor: 
 

( )1
iexp βEip Z −= −  

 
where Z is the partition function defined by ( )exp /i B

i
Z E k T= −∑  

The idea of thermal importance sampling is crucial to the Metropolis 
Monte Carlo method, which is designed to generate states with a frequency 
that exactly corresponds to their thermal ‘importance’, defined by pi above. 
Thus, the thermodynamic averages of mechanical quantities Q (such as 
internal energy, volume, pressure) can be computed as an arithmetic 
average over sampled states. 
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1(h) 
 
Diffusive behaviour will occur on the mesoscale where the microscopic 
degrees of freedom relating to atomistic motions are thermally equilibrated 
and give rise to a dissipative frictional force and a fluctuating (Langevin) 
force on larger particles, which act to produce random walk motion (i.e. 
mean-square displacement proportional to square root of time, or number 
of steps). The Langevin force does not conserve momentum between 
microscopic collisions and mesoscopic motion, although its time-averaged 
value is zero. The crucial difference between this and systems showing 
hydrodynamic behaviour is that momentum is strictly conserved in each 
collision between the fluid particles and the mesoscopic particle. This has 
observable consequences in polymeric systems, for example the Rouse 
model for short chains in the melt state predicts a diffusion coefficient 
which is proportional to N–1 (diffusive) whereas the Zimm model for 
chains in solution predicts a N–0.6 dependence (hydrodynamic). 
1(i) 
 
Material properties of the GaAs-AlGaAs layers confine the electrons to a 
thin layer (~ 10 nm). Momentum perpendicular to this layer is quantised. 
 



 
 
Similarly, electrons are confined in the plane of the 2DEG by the gates (but 
the well width now depends on the gate voltage). Transmission through 
split gate is ballistic (at low temperature) so that there is no scattering 
resistance. Resistance is due to contact between 2DEG and QPC (quantum 
point contact). Each available energy level gives rise to a separate channel 
for the transmission of electrons. Total conductance of QPC is: 
 

22
n

n

eG T
h

= ∑  

 
Transmission of channel n is Tn = 1 for no scattering and h/2e2 is the 
resistance quantum, which is highest resistance possible for open QPC. 
1(j) 
 
If ε2 = ε3 = 0, it follows that from Hooke’s law in 3D that: 
 

(QPC) 



( )2 2 3 1
10 ( )
E

ε = = σ − ν σ + σ  

( )3 3 1 2
10 ( )
E

ε = = σ − ν σ + σ  

 
Hence if we subtract the second of these equations from the first we find:  
 

2 3
10 ( )(1 )
E

= σ − σ + ν  

 
Since neither 1/E nor (1 )+ ν will be zero for the general situation, we find 
σ2 = σ3, as we would expect from symmetry. 
 
Substituting this condition back into the equation for ε2, we find: 
 

1
2 3 (1 )

νσ
σ = σ =

− ν
 

 
and so in the ‘1’ direction we have: 
 

( )
2 2

1 1
1 1 2 3

1 2 1 2( ) 1
1 1E E E

⎛ ⎞ ⎛ ⎞σ ν σ − ν − ν
ε = σ − ν σ + σ = − =⎜ ⎟ ⎜ ⎟− ν − ν⎝ ⎠ ⎝ ⎠

 

 
Therefore, the ‘effective modulus’ σ1/ε1 is simply: 
 

1
2

1

(1 )
1 2

Eσ − ν
=

ε − ν − ν
 

For a material whose Poisson’s ratio is ≈ 0.5 the term 21 2− ν − ν  
approaches zero, so the material becomes very stiff in the above constraint 
situation 
 
[The marked increase in stiffness in this constraint situation occurs in 
rubber, which has a Poisson’s ratio of ≈ 0.5. For small values of ν (e.g., ν < 
0.1) the difference between the above expression and E is negligible.]



SECTION B 
 
2. 
 
The following table summarises the comparison between neural networks 
and polynomial regression techniques. 
 
Neural networks Polynomial regression 
Adaptive functions (shape not 
determined by user) 

Shape pre-determined 

Can cope with very complex 
variations 

Complexity limited to choice of 
function 

Can cope with interactions between 
input parameters 

Can only take into account 
interactions inasmuch as they are 
deliberately introduced in the 
function chosen 

Problems associated with NN are 
overfitting and the need for an 
indication of the uncertainty of 
fitting. The former occurs as a result 
of the flexibility of the functions 
defined by complex NNs. The latter 
is a consequence of the typical 
problems treated in NN, which are 
often complex and involve 
thousands of data points. 
As a result, it is difficult for the user 
to have an idea of where data points 
may be lacking to obtain a suitable 
model. To be of practical use, the 
model must therefore be able to 
communicate a prediction and an 
‘error bar’ which represent the 
uncertainty of fitting. In regions 
with little data, the uncertainty of 
fitting will be large and user should 
consider predictions with caution. 

Overfitting is inherently impossible 
as the function is not adaptable. 
Because the problems treated with 
'classical' regression methods are 
typically simpler, there is perhaps 
no need for a method to estimate the 
uncertainty of fitting. 

In practice, the method is computer 
intensive and requires highly 
specialised software. A computer is 
also required to make predictions 
and the model must be distributed. 

These 'models' are very easily 
communicated (in written form 
typically) and can be used at most 
levels of skills in the industry. They 
do not require highly specialised 
software. 



The 'meaning' of the model can only 
be examined by making predictions. 

The 'meaning ' of the model is 
directly visible, (e.g strength = 430 
+ 200C + 50Cr indicates a stronger 
effect of C on strength). 

 
[35%] 

 
One risk with NN is overfitting. This occurs when noise rather than the 
general trend is fitted during the regression and is possible when using NN 
because of the flexibility of the typical networks used. A first way to avoid 
this is to use a regulariser, which penalises large values of weights 
(adjustable parameters). Large values of weights are associated with sharp 
variations while small values are associated with smooth variations. The 
students may also describe this in terms of prior belief and 
penaliser/regulariser alpha (large values of alpha penalises strongly large 
values of weights => correspond to the belief that the fitting function 
should be smooth). A second method is to divide the database in two sets. 
The first set is used to optimise the adjustable parameters, the second to 
verify that no overfitting has occurred. A drawing may be included here. 
 

 
 
Another difficulty lies in the problem of assessing the quality of the output. 
Although this is not intrinsic to NN, the fact that they are mostly used for 
complex problems makes this issue more relevant: with large number of 
input variables, it is frequently the case that some regions of the input 
space contain very little information. In these areas, the fitting is uncertain 
and we need to communicate this as well as the fitting itself. 



 
Conventional approach (error function minimisation to identify optimum 
parameters) cannot include this uncertainty. The Bayesian approach solves 
this by optimising a probability distribution on the parameters rather than 
identifying a single set of parameters. Where this probability distribution is 
'wide', the uncertainty is large. 

[35%] 
 
The answer should include the following points: 
 

– A discussion on the size of the database used in comparison with the 
number of adjustable parameters in the chosen neural network 
structure. This should be deduced from the number of input 
variables (5+bias=6) and the structure of the network (3HU 
therefore 3*6+4=22 adjustable parameters). It is typically 
recommended to have 5-10 input data per adjustable parameter. 
Therefore, the database was not suitable by far. 

– It may also indicate that there is no indication why such a structure 
was chosen, it is best to explore a variety of structures and rank 
them. 

– The text indicates that the 15 data points were collected and used to 
train the model. The comparison made after training is therefore on 
data used for the training and is entirely meaningless. It is likely that 
overfitting occurred. 

 
The conclusion is obviously that rejection is justified. 

[30%] 



3. 
 
(a)  The Jominy end-quench test is used to measure the hardenability of 
steels. It produces a continuous variation of cooling rate along the bar.  The 
cooling rate governs the phases formed from austenite, notably the 
formation of martensite when diffusion-controlled transformations are 
avoided (above the critical cooling rate). This is detected by hardness 
testing along the bar. 

[10%] 
 

(b)   
 
 
 
 
 
 
 
 

[20%] 
 
 
 
(c)  (i)              (ii)   
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(iii) (iv) 
  
 
 
 
 
 
 
 
 
 
 
 
[ 

[40%] 
 

(d)  The analytical solution assumes a semi-infinite bar, but the other 
conditions are identical. The predicted temperature is evaluated 
continuously in x, rather than being interpolated between nodal values. 
 
 
 
 
 
 
 

 
 
 
 
 

[30%] 
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4. 
 
From the formula given in the question, it is apparent that the deformation 
tensor eij takes the form: 

 
1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

ij

n n n
e n n n

n n n

β β β⎛ ⎞
⎜ ⎟= γ β β β⎜ ⎟
⎜ ⎟β β β⎝ ⎠

 

where the components of n and β are defined in a reference set of 
orthonormal axes. 
 
This deformation tensor can be separated into a symmetric strain tensor εij 
and an anti-symmetric rotation tensor ωij. The symmetric strain tensor εij is 
clearly: 

 
1 1

1 1 2 1 1 2 3 1 1 32 2
1 1

1 2 2 1 2 2 3 2 2 32 2
1 1

1 3 3 1 2 3 3 2 3 32 2

( ) ( )
( ) ( )
( ) ( )

ij

n n n n n
n n n n n
n n n n n

β β + β β + β⎛ ⎞
⎜ ⎟ε = γ β + β β β + β⎜ ⎟
⎜ ⎟β + β β + β β⎝ ⎠

 

 
This tensor has to be symmetric so that the strain produces normal strain 
and shear strains without any rotation. 
 [20%] 
 
The trace of this matrix is simply: 
 

( )1 1 2 2 3 3 . 0n n nγ β + β + β = γ =n β  
 
since, by definition, the slip plane must contain the slip direction, so that 
the scalar product of n and β is zero. [10%] 
 
In lithium fluoride there are six distinct planes of the type {110}. Within 
each plane there is only one distinct < 0 1 1 > direction. Hence, there are six 
physically distinct slip systems. 
 [10%] 
 
Slip systems which produce different pure strains are said to be 
independent. Thus, we need to evaluate the strain tensors for each of these 
six physically distinct slip systems. 
 
 
 
 
 
 



It is convenient to label the six slip systems A – F for simplicity: 

 

Label Slip system  Label Slip system 

A (110)[ 0 1 1 ]  D ( 1 1 0 )[011] 

B ( 0 1 1 )[110]  E (101)[ 1 0 1 ] 

C (011)[ 1 1 0 ]  F ( 1 0 1 )[101] 

 
Looking at slip system A, the strain tensor produced by shearing an angle γ 
is: 

 

A

1 0 0
 0 1 0

2
0 0 0

⎛ ⎞
γ ⎜ ⎟= −⎜ ⎟

⎜ ⎟
⎝ ⎠

ε  

 

since 1 1, ,0
2 2

⎡ ⎤= ⎢ ⎥⎣ ⎦
n  and 1 1, ,0

2 2
⎡ ⎤= −⎢ ⎥⎣ ⎦

β  (choosing our orthonormal 

set of axes to be parallel to the crystal axes). 
 
Evaluating the other five strain tensors in a similar manner, we find: 
 

B

1 0 0
  0 1 0

2
0 0 0

⎛ ⎞
γ ⎜ ⎟= −⎜ ⎟

⎜ ⎟
⎝ ⎠

ε ;     C

0 0 0
 0 1 0

2
0 0 1

⎛ ⎞
γ ⎜ ⎟= ⎜ ⎟

⎜ ⎟−⎝ ⎠

ε ; 

D

0 0 0
  0 1 0

2
0 0 1

⎛ ⎞
γ ⎜ ⎟= ⎜ ⎟

⎜ ⎟−⎝ ⎠

ε ;     E

1 0 0
 0 0 0

2
0 0 1

⎛ ⎞
γ ⎜ ⎟= ⎜ ⎟

⎜ ⎟−⎝ ⎠

ε ;     F

1 0 0
  0 0 0

2
0 0 1

⎛ ⎞
γ ⎜ ⎟= ⎜ ⎟

⎜ ⎟−⎝ ⎠

ε  

 
 [30%] 
 
It is immediately apparent that: 
 

A B=ε ε  

C D=ε ε  
E F=ε ε  

 



so that there are at most three independent slip systems. However, an 
examination of Eε  shows that it can be produced by a linear combination 
of Aε  and Cε : 
 

E A C= +ε ε ε  
 

i.e., in words, shear of an amount γ on the slip system (110)[ 0 1 1 ] 
combined with shear of the same amount γ on (011)[ 1 1 0 ] together produce 
a shape strain equivalent to shear of an amount γ on the slip system 
(101)[ 1 0 1 ]. Hence there are only two independent slip systems in lithium 
fluoride, e.g., Aε  and Cε . 

[15%] 
 
For a material to be able to deform plastically in response to a general 
system of stresses, there have to be five independent slip systems to be 
able to generate the five independent components of the strain matrix in a 
plastic strain deformation situation (the trace of the strain matrix has to be 
zero in plastic deformation since volume is conserved − this reduces the 
number of independent components from six to five).  
 
Lithium fluoride has only two independent slip systems. Hence, we can 
infer that it will not be ductile in a general loading situation. Instead, it will 
fracture. 

[15%] 
 
5.  
 
The average internal energy of the system in thermal equilibrium can be 
computed from the partition function ( )Bexp /i

i
Z E k T= −∑ , or 

alternatively ( )exp i
i

Z E= −β∑ , where β = 1/(kBT) and Ei are the energies 

of each microstate i. In each case, the sum runs over all microstates of 
system, so account must be taken of the degeneracies of each macrostate. 
 
For a single particle: 1 1 3exp( ) 5exp( 2 )Z = + −βε + − βε  
 

Hence, ( ) ( )
( ) ( )

1

1

3 exp 10 exp 21
1 3exp 5exp 2

ZU
Z

ε −βε + ε − βε∂
= − =

∂β + −βε + − βε
 

 

When B/T k= ε , then 1/β = ε , and hence 3 exp( 1) 10 exp( 2)
1 3exp( 1) 5exp( 2)

U ε − + ε −
=

+ − + −
 

 
[30%] 



 

V
U UC
T T

∂ ∂ ∂β
= =
∂ ∂β ∂

 

 
Hence, 

( ) ( )( ) ( ) ( )( )
( )

( ) ( )

2

2 2 2
B

3 exp 10 exp 2 3 exp 10 exp 2

1 3exp( ) 5exp( 2 )1

3 exp 20 exp 2
1 3exp( ) 5exp( 2 )

VC
k T

⎧ ⎫− ε −βε − ε − βε ε −βε + ε − βε
⎪ ⎪

+ −βε + − βε⎪ ⎪= ⎨ ⎬
ε −βε + ε − βε⎪ ⎪+⎪ ⎪+ −βε + − βε⎩ ⎭

 
 
In the limit when T becomes large, then exp (–βε) → 1, and hence: 
 

( )( ) 2 2

2 2
B B

3 10 3 101 23 38
81 9 81VC

k T k T
− ε − ε ε + ε⎧ ⎫ε ε

= + =⎨ ⎬
⎩ ⎭

 

[50%] 
 

If particles are not independent, then partition function will not factorise 
and the analytical derivative of the internal energy will become extremely 
unwieldy to compute. An alternative is to use Metropolis Monte Carlo 
(constant volume) to calculate the system energy. A brief summary of the 
general Monte Carlo algorithm should be given. 

[20%] 



6. 
 
The four fabrication steps are described by following diagrams. 
 

 

IV   
[20%] 



(a)  
 
Coulomb blockade involves a small island of charge situated between two 
electrodes. If the island is small enough and has N electrons then an energy 
gap opens up between the energy of the last (Nth) electron and the first 
empty electron state (N+1)th. The size of the gap is equal the square of the 
electron charge e2 divided by the capacitance of the island C. Therefore if 
the island is small enough so that this energy gap is larger than the thermal 
energy of the system (kBT), then electrons cannot quantum mechanically 
tunnel through the system, since the only free states that electrons may 
tunnel onto the island are above the energy of the electrons in the 
electrodes. If, however, a gate is used to electrostatically move the island’s 
energy states with respect to the electrodes then the (N+1)th electron free 
state can be moved below that of one of the electrodes and electrons can 
quantum mechanically tunnel through the island, one at a time, effectively 
giving rise to a single electron transistor. Therefore the current-voltage 
characteristics have zero current until the applied gate voltage corresponds 
to ±e/2C (see figure in part (b) below). The suppression of current at low 
voltage is called Coulomb blockade and the region below the threshold 
voltage is called the Coulomb blockade region. 

[20%] 
 
(b) 
 
For Coulomb blockade to occur, there are two main conditions that must 
be met: 
 

(i) The charging energy of the island, Ec, must be greater than kBT. This 
can be illustrated by looking at the energy level structure of island. 

 

 
Electrons can only tunnel from lead onto island if there is an 
available empty energy level. Assuming a metallic lead: 



 
Electrons available for tunnelling from a range of energies of width 
kBT around the Fermi energy in the lead. Clearly, if kBT < Ec, then at 
least one energy level will be available at all times. 

 
Tunnel barrier resistance must be much larger than the resistance 
quantum h/e2. The location of the electron is described by the spread 
of the electron wave function. If the tunnel barrier transmission is 
high (the tunnel barrier resistance equal to one or more open 
channels R < h/e2) then the electron is not fully contained within the 
island. Under these conditions, transfer of charge onto the island is 
not quantised and Coulomb blockade cannot control electron 
transport. 

 
[20%] 

 
(c) The island capacitance is given by: 
 

 
r 0

12 9

18

8

8 3.9 8.8 10 30 10

8.24 10  F

C r
− −

−

= ε ε

= × × × × ×

= ×

 

 
 neglecting gate and tunnel barrier capacitance. 
 
 The charging energy is given by: 
 



 

2

c

19 2

18

21

2
(1.6 10 )

2 8.24 10
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eE
C

−

−

−
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×
=

× ×
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The maximum operating temperature for Coulomb blockade occurs 
when c BE k T= . Hence Tmax given by: 

 
c

max
B

21

23
1.55 10 111 K
1.38 10

ET
k

−

−

=

×
= =

×

 

[40%] 



7. 
 
The pair potential approximation involves the termination of the many-
body expansion of the potential energy at the second term, i.e.: 
 
   U = V1

i
∑ (ri)+ V2(rij

ij
∑ ) . 

 
In other words, it ignores higher order terms such as the three-body 
potential. V2 (the pair potential) is generally dependent only on the distance 
between two atoms and has no angular dependence. 
 
Range of validity: (a) molecular crystals where atoms have closed-shell 
configurations similar to atoms (b) ionic crystals where atoms are 
electrically charged ions and the interaction energy is mainly Coulombic 
and varies as the inverse of the distance between ions. The pair potential 
approximation is not valid for covalent materials (directional bonding) or 
metals (electron density dependent). This is evident from the electron 
density distributions below where only molecular and ionic crystals have 
near-spherical shapes indicating that central pair-wise potentials apply. 

[10%] 
 

(a) The first term is the attraction between atoms. Depending on the 
material, it can arise from the attraction between ions of opposite sign 
(ionic bonding), the formation of a molecular orbital (in covalent 
bonding), the interaction of electric dipoles (van der Waals bonding) 
and the attraction between molecules that have a permanent dipole 
moment (hydrogen bonding). The second term comes from the 
repulsive interaction between overlapping electron shells of 
neighbouring atoms. 

[10%] 



 

(b) The force is given by  1 1d
d

n mU nAr mBr
r

− − − −= −  

 

In equilibrium 0dU
dr

= , and hence  
1

0

n mAnr
Bm

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
 

The second derivative is given by 
2

2 2
2

d ( 1) ( 1)
d

n mU n n Ar m m Br
r

− − − −= − + + +  

 
Therefore: 
 

0

1 2 2
2

2
0

1 d ( 1) ( 1)
d

n m
n m n m n m

r

U An An AnE n n A m m B
r r Bm Bm Bm
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⎡ ⎤

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= = − + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎣ ⎦

 

  
1 2 2

( 1) ( 1)
n m

m nAn An Ann n A m m B
Bm Bm Bm

+ +
− ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
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For crystal stability 
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2 0d U
dr

>  at r = r0  (i.e. U must be a minimum) 

 
 

Therefore: 2 2
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(c) At the maximum attractive force  
2

2
d 0
d

U
r

= . 



Therefore 2 2( 1) ( 1) 0n m
f fn n Ar m m Br− − − −− + + + =  

 

  i.e. 

1

( 1)
( 1)

n m

f
n n Ar
m m B

−⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 

 

  so 

1 1 1

0

( 1) 1
( 1) 1

n m n m n mfr n n A An n
r m m B Bm m

−
− − −⎛ ⎞+ +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

 
 Sketch of force-distance curve: 
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(c) For (n, m) = (6, 12) 
0

1.11fr
r
=  or 11% strain. 

   For (n, m) = (1, 12)  
0

1.19fr
r
=  or 19% strain. 

 

The (6,12) potential represents a molecular solid and (1,12) 
potential represents an ionic solid. So the ionic solid can withstand a 
greater tensile load before bond breaking occurs, i.e. it has a 
stronger bond. However, the predicted strains are much different 
from those actually observed. In ductile materials plastic 
deformation and the formation of dislocations greatly increases the 
strain to failure (up to 50%). In brittle materials, the presence of pre-
existing flaws and the lack of plastic deformation greatly reduces 
the strain to failure (down to 2%). 

[20%] 


