
MASTER OF PHILOSOPHY  Modelling of Materials 
 
Examiner’s Solutions to Paper 2 
 
SECTION A 
 
1(a) 
 
The hardness of diamond is related to its giant covalent structure, and the 
need to break the three-dimensional network of strong sp3 hybridised 
carbon-carbon bonds. 
 
The malleability of gold is due both to the nature of metallic bonding, 
which gives rise to a low Peierls-Nabarro stress for dislocation motion, 
and to its crystalline structure (fcc), which has six independent slip 
systems (whereas only five are required for general plasticity) along 
which dislocations can glide. 
 
The electrical conductivity of graphite can be rationalised in two 
alternative, but essentially equivalent, ways. The first is via the presence 
of delocalised electron density, due to a p-orbital on each carbon, above 
and below the plane of the 2-dimensional sp2 hybridised graphene sheet. 
The second is to consider the band structure of graphite, which reveals 
that it is a semi-metal with zero direct band gap at the Fermi level. 
 
1(b) 
 
Lattice type F, motif is S (0,0,0) Zn (¼,¼,¼). There are four formula 
units (ZnS) in each unit cell (a calculation should involve a consideration 
of the number of atoms of each type weighted by their contribution to the 
unit cell). Spacings of the (110) planes in a cubic crystal are given by: 
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1(c) 
 
The rule of mixtures states that the modulus of the composite Ec, is given 
by the volume fraction-weighted sum of the moduli of the fibres, Ef, and 
the matrix, Em. 
 

c f f m mE E v E v= + , where f 1 mv v= −  
   



Hence ( )c f m f mE E E v E= − +    
 
Thus, for the two alternative values of fibre modulus, the volume 
fractions in an epoxy matrix required to achieve a composite modulus of 
80 GPa are given as follows: 
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v E E E E

v E E E E

= − − = − − =

= − − = − − =

 

 
1(d) 
 
In an electronic structure calculation, Schrödinger’s wave equation is 
traditionally solved by diagonalising the Hamiltonian matrix H as shown 
in the flowchart below. In practice we start with some initial wave 
functions, generate the charge density, construct and diagonalise H, 
obtain new wave functions and density and repeat the process until the 
solution is stationary, i.e. density (out) = density (in). This is known as 
iterating to self-consistency in the electronic density. 
 

 



1(e) 

An obvious use for a do loop would be a simple summation, e.g. 
3

1
i

i
u

=
∑ , 

where the do-loop variable i would take values from 1 to 3. 
 
However, the application of loops is much wider than this obvious case. 
do loops may be used to repeat an action for all the elements in an array. 
For example, initialising all the elements to zero; or for performing a 
matrix multiplication: 
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would use do loops both to perform the summation over k, and to run 
over all the values of i and j, setting each element of the product matrix. 
 
An obvious use for do...while loops would be in a program employing 
a numerical technique (such as root-finding) producing successive 
approximations (say xn, xn+1 and so on) to the result. A do...while loop 
would be used to halt the calculation when succeeding values of xn were 
sufficiently close. 
 
1(f) 
 
The mean-square end-to-end distance for a random walk polymer coil is 
derived as follows: 
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0 for random walk,  hence 

N N N N

i j i j
i j i j

N N N N N

i j i i j
i j i i j

N N

i j
i j

R u u u u

R u u u u u

u u R Nu

= = = =

= = = = =

= =

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

= = +

= =

∑ ∑ ∑∑

∑∑ ∑ ∑∑

∑∑

 



For amino acids, the projected length of monomer in chain direction u 
will be around 3 Å (a sequence of N-C-C bonds, each of 2 Å, but not in a 
straight line). Hence: R ~ 5 nm, for N = 300 as specified in question. 
 
However, the model assumes that monomer segments are uncorrelated in 
orientation, and have no excluded volume. For this reason, real polymer 
coils will be ‘expanded’ compared to the above result, both by local 
correlations due to main chain stiffness and side groups, and also by long-
range correlations due to excluded volume.  
 
1(g) 
 

The definition of thermodynamic temperature is 1

V

S
T U

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
, i.e. T is more 

naturally defined as an inverse quantity ( ) 1
Bk T −β =  (in units of energy). 

The latter definition is more consistent with the second and third laws of 
thermodynamics. That is, negative temperatures, i.e. β 0< , are naturally 
‘hotter’ than positive temperatures, i.e. β 0> , which is what is observed 
in practice. Furthermore, however much we cool by increasing β, we can 
never decrease the temperature below absolute zero. 
 
1(h) 
 
A solid particle starts to melt from its surface, which is readily “wetted” 
by its own melt. Thus, the onset of global melting of a particle is when a 
spherical solid-liquid interface would start to migrate towards the centre 
of the particle. This condition for onset is analogous to a critical nucleus 
of the solid within the liquid. The critical nucleus is in unstable 
equilibrium with the liquid and, if the temperature is infinitesimally 
raised, it melts. The unstable equilibrium is at a melt supercooling ∆T 
inversely proportional to the critical radius r*. The standard analysis 
(from classical nucleation theory) gives: 
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from which follows: 
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The driving free energy for solidification (per unit volume), ∆GV, is given 
by the following expression: 
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Thus, the supercooling ∆T is given by: 
 

8
m V

9
V

1337 2.4 10 257 K
1.25 10

T GT
H
∆ × ×

∆ = = =
∆ ×

. 

 
Hence, the melting temperature T’ = 1337 – 257 = 1080 K. 
 
1(i) 
 
Conventional error minimisation identifies an optimum set of parameters. 
Students are expected to quote Bayes’ theorem in the form below, and 
identify prior, P(Θ|H), likelihood, P(D|Θ,H), evidence, P(D|H) and the 
posterior, P(Θ|D,H), distributions. The method allows one to fit a 
probability distribution of the adjustable parameters (or weights). If 
different values of the weights have similar, high probabilities (i.e. a wide 
distribution) then different predictions will also have reasonably high 
probabilities, i.e. the error bars will be large. If on the contrary, there are 
sufficient data and the posterior probability is narrow around the optimum 
values, then the error bars will be small. 
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1(j) 
 
Limit analysis is used in plastic deformation situations to specify either 
minimum loads below which something will definitely not deform 
plastically (lower bound solutions) or loads for which plastic deformation 
is guaranteed (upper bound solutions). Thus, lower bound solutions are 
definite underestimates of the load required to cause plastic deformation, 
while upper bound solutions are definite overestimates of the same load. 
 
For the notched metallic bar in plane strain tension, a suitable lower 
bound estimate can be found by invoking a suitable stress system, for 



example one where the stress over the projected area containing the notch 
is zero, and the stress is equal to the yield stress elsewhere. 
 
 

P Pσ = 0

σ = 2kh

 
 

For plane strain deformation where one principal stress within the plane 
is zero, the uniaxial yield stress at which plastic deformation begins is 2k, 
where k is the shear yield stress. 

 
Hence, for a slab of breadth b, we can equate forces to show that: 

 
P = 2 k b h 

 
is our maximum estimate of the lower bound load required to just cause 
plastic deformation of the notched bar. 
 
An upper bound estimate can be found by assuming that plastic 
deformation occur by shear yielding on two planes AB and AC at 45° to 
the uniaxial tensile stress.  
 

P P
A

C B  
 

Suppose shear yielding causes a displacement δx along AB. The 
component of this displacement parallel to the uniaxial tensile stress is: 

2
45cos xx δ

=δ  

The length AB = h2 . Hence the work done within the metal shearing a 
distance δx along AB, Winternal, is: 

 
xkbhW δ= 2internal  

 
since the area over which the shear stress acts is b h2 . If the process is 
100% efficient, so that there is no heat lost during the process, this must 
be equal to the external work done moving through a distance δx cos 45°, 
Wexternal. 



Therefore, in general, 

2
2
xP kbh xδ

≥ δ  

with equality when the process is 100% efficient – this will be the lowest 
value we can obtain for our upper bound solution. Hence the minimum 
value of the upper bound solution that we obtain for P is: 

 
P = 2 k b h 

 
which for this particular case is the same as the lower bound solution. 
 
Thus, in this very special case, we can be confident that we have found 
the exact load necessary to cause plastic deformation to occur. 
 



SECTION B 
 
2. 
 
The density of allowed states is defined as the number of electron states 
N(E) per unit energy range and given mathematically by D(E) =

dN(E)
dE

. 

Note that a state is defined by both a level and a spin. The number of 
states is equal to twice the number of levels due to the Pauli exclusion 
principle. 
 
At T = 0, the allowed states are fully occupied below the Fermi energy 
and completely unoccupied above the Fermi energy.  
 
At T > 0, the probability F(E) that an electron state at energy E will be 
occupied is determined by Fermi-Dirac statistics. The probability 
function is given by: 
 

( ) /
1( )

1 FE E kTF E
e −=

+
   where EF is the Fermi energy. 

 
Therefore the density of occupied states at T > 0 is given by: 
 
 ( ) ( ) ( )Z E D E F E=  

[20%] 
 
(i) Consider free electrons in a ‘1-D box’ of length L. 
 
In k-space, equal values of electron energy E lie at the end of a line of 
length k. 
 

Number of electrons along line: 2 length of line
length per k-state

N ×
=  (including spin). 

Length per k-state = 2
L
π . 
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Note that the number of electrons N equals the number of states. 
 

  Hence 
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Sketch of D(E) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[20%] 
 

(ii) Fraction of free electrons with energies above EF/2 is given by: 
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[10%] 

 
(iii) For a 2-D metal D(E) = constant, A say. Therefore the fraction 

of free electrons with energies above EF/2 is given by: 
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[10%] 
 



(iv) Sketch of the occupation density of states for a 1-D free electron 
metal at T > 0: 

 

                                                [20%] 
 
(v) Sketch of the allowed density of states for a 1-D nearly free 

electron metal 

 
 ( )( ) dN E dN dED E

dk dkdE
= =  

 

When the lattice potential is weak 0  at dE nk
dk a

π
→ = , where a is 

the lattice constant. In the Ziman model, travelling waves become 
standing waves with zero group velocity (the gradient of the E-k 
curve). Thus ( )D E → ∞  at the Brillouin Zone (BZ) boundaries, as 
shown above. These discontinuities become van Hove singularities 
in a 3-D crystal. 

 
[20%] 

 



3. 
 
If the chemical potential of the solute is known, and the solution is an 
ideal solution (no solute-solute interactions), then the change in surface 
tension γ may be related to the concentration of the solute by the 
following argument. 
 
Starting with master equation for Gibbs free energy: 
 
d d d d di i

i
G S T V p n A= − + + µ + γ∑  

where S, T, V and p have their usual meanings, µi and ni are the chemical 
potential and number of species i, γ is the surface tension and A is the 
area of interface between the components. 
 
The full master equation simplifies at constant T and p to: 
 
d d di i

i
G n A= µ + γ∑  (1) 

 
Integrating both sides, i i

i
G n A= µ + γ∑ , and then differentiating fully: 

 
d d d d di i i i

i i
G n n A A= µ + µ + γ + γ∑ ∑     (2) 

 
Comparing the forms of equations (1) and (2), it is clear that: 
 

d d 0i i
i

n Aµ + γ =∑ . 

 
Hence, defining ni/A as the surface excess Γi, then: 
 
d di i

i
γ = − Γ µ∑ , and since ln d dlni i i iRT C RT Cµ = ⇒ µ =  

 
then d .d lni iRT Cγ = − Γ∑ , which was the result to be proved. 
 

[40%] 
 
 
 
 



Using the Gibbs adsorption isotherm, 
 
d .d lni iRT Cγ = − Γ∑  
 
and setting the surface excess of component A to zero, then: 
 

B Bd d lnRT Cγ = − Γ        (*) 
 
Differentiating with respect to CB yields: 
 

( )A A Bln 1 /b C aγ = −γ − γ + , i.e. Szyszkowski relation given in question. 
 
Differentiating again with respect to CB yields: 
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using the lemma given that ( ){ } ( )B
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 from equation (*), and so: 
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Setting B A /b RT∞Γ ≡ γ  and 1/ aα ≡ , we obtain: 
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B B B B B

B B

1
1 1

CC
C C

∞ ∞ ⎧ ⎫α
α Γ = Γ ⇒ Γ = Γ ⎨ ⎬+ α + α⎩ ⎭

 

 
which was the result to be proved (note that this has the same form as the 
Langmuir isotherm). 
 

[60%] 



4. 
 
In many designs, the combination of material properties can maximise 
performance of a component.  For example, the expression for the 
maximum stiffness and minimum weight of a rod subjected to tensile 
loading or bending will include the a term of the form En/ρ  where E is 
the Young’s modulus,  ρ is the density of candidate materials and n is a 
constant with a numerical value depending on the precise loading 
conditions. 
Materials selection charts show relationships between two (or more) 
properties by plotting graphically the values of the properties, generally 
on a logarithmic scale.  Hence the above example provides an expression 
of the form nlogE = log ρ .  This expression can be plotted on a materials 
selection chart as a series of lines all with gradient n.   

All materials on a given line have the same value of En/ρ  and hence will 
behave similarly.  Materials above the line and to the top left-hand corner 
in figure 2 in question paper, have the potential to be the stiffest and 
lightest; hence would be good choices for the application outlined above. 
 
Elastic energy per unit volume can be determined in either of two ways 
(give equal credit):  
a)   
 
 
 
 σ = E ε        ⇒         F/A = E e/l        ⇒         F =( EA /l) e     or    F 
= k e   
Stored energy = ∫ F de  =  ∫  k e de     =    ½ k e2           =    ½ F2 / k   

=  ½ σ 2A2  / k     =     ½ σ 2A2  / (E A / l)    
 
Stored energy / unit volume  =  [½ (σ 2A2 l)  / (E A] / [A l]   = ½ σ 2/ E 
 
b)    Directly from stress-strain curve 
    

Stored energy is area under elastic region of 
stress/strain Plot 

     =   ½ σ   ε   =   ½ σ 2/ E 
 

 
ε 

σ 

Force F acting on area A

length l



Hence to maximise energy stored per unit volume, need to consider merit 
index of  σ 2/ E. Use Modulus – strength (yield) selection chart provided 
in question paper (figure 2) 
 
Need to choose materials in bottom right-hand corner to maximize energy 
stored, and then move a line of gradient 2 (shown by guide line σ 2/ E ρ  
= constant), which denotes equivalent materials, to the left.  
 
Other properties include fracture toughness mainly. Also have to consider 
actual constraints associated with particular use of spring, hence often 
specify a minimum strength since many applications will require spring 
not to plastically yield.  
 
In practice, low fracture toughness will eliminate many ceramics – 
materials in top right hand corner.  Then materials on a line of gradient 2 
will be appropriate depending on the minimum strength required.  
Suggest steels, glass or carbon fibre reinforced polymers (CFRP, GFRP), 
or even elastomers (but these generally will have too low yield strengths 
for most applications). 
 
Elastic energy per unit mass can be determined using density ρ  = mass 
/volume  
 
Hence   merit index to maximize energy per unit mass  =   merit index 
per unit volume / ρ 
 = σ 2/ (ρ  E) 
 
 = (σ / ρ) 2  / (E / ρ) 
 
Use Specific Modulus – Specific strength (yield) selection chart provided. 
 
Alters selection in that steels now less favourable compared with CFRP, 
GFRP, and also engineering polymers now of greater interest. 
 
For the following applications:  

(a) spring used as part of a car suspension system –  steel due to need 
for minimal strength 

(b) a non-metallic torsional spring in the form of a long thread/fibre –  
polymer (e.g. nylon) or glass (both easy to fabricate in right shape) 

(c) the locking catch on a food container –  polypropylene since likely 
to be integral to box 

 



5.  
 
The Frisch Hasslaucher Pomeau (FHP) lattice gas model is constructed of 
discrete, identical particles that move from site to site on a triangular 
lattice, colliding when they meet, always conserving particle number and 
momentum. FHP showed that it is possible to derive the Navier-Stokes 
equations from the micro dynamics of this system. The innovative feature 
of FHP model is the simultaneous discretisation of space, time, velocity 
and density. No more than one particle may reside at a given site and 
move with a given velocity. Unlike purely diffusive lattice gases, 
momentum is conserved in each collision and so the system is Galilean 
invariant and therefore displays hydrodynamic behaviour. Unlike the 
hydrodynamic lattice gas models that preceded it, the FHP model has an 
isotropic hydrodynamic limit because of the underlying symmetry of the 
triangular lattice. Three examples of its application would be to 
modelling flow of immiscible binary liquids (e.g. oil/water), as an 
alternative to mesh-based computational fluid dynamics, and modelling 
flow through porous media. 

[20%] 
 
The microdynamics of the FHP lattice gas model are described by the 
following equation: 
 

[ ]( , 1) ( , ) ( , )i i i in t n t n t+ + = + ∆x c x x    (*) 
 
where ni are the particle fluxes from site x to site x + ci on the lattice, x 
are position vectors of the lattice sites, ci are translation vectors between 
adjacent lattice sites, (cosπ / 3,sin π / 3)i i i=c  [where i = 1, 2, … , 6], t is 
the time (a discrete variable) and ∆i is the collision operator. 
 
The collision operator, ∆i, describes the change in fluxes ni due to particle 
collisions and takes values ±1 or 0. In the original FHP algorithm, it is the 
sum of two Boolean expressions for the two-body and three-body 
collisions. More elaborate collision operators may be formed by including 
four-body collisions or “rest” particles, but these are beyond the scope of 
the question. Whatever its form, there are two restrictions on ∆i, namely 
that it conserve mass and momentum for each flux: 
 

i.e.  ( ) 0i
i

∆ =∑ n   and  ( ) 0i i
i

∆ =∑c n . 

This is necessary for the FHP model to reproduce the correct 
hydrodynamic behaviour of the system. 



Summing the microdynamical equations of motion (*) over all lattice 
sites, and imposing the two constraints on the collision operator, we can 
obtain the mass and momentum balance relations for the system as 
follows: 
 

[ ]( , 1) ( , ) ( , )

( , )

i i i i
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for mass balance at each time step. 
 

[ ]( , 1) ( , ) ( , )

( , )

i i i i i i i
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n t
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c x c c x c x
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for momentum balance at each time step. 
 
Hence mass and momentum are conserved throughout the simulation at 
each time step. 
 

[50%] 
 
The FHP model can be considered deficient over continuum methods for 
modelling flow, such as finite element or smoothed particle 
hydrodynamic methods for solving Navier-Stokes equations, mainly 
because of the level of noise inherent in having Boolean occupancies at 
each lattice site. This means that to obtain meaningful information about 
fluid densities and velocities at each point, one must average over long 
times in order to produce an acceptably low level of signal-to-noise. The 
extra computation required acts partially to offset the intrinsic efficiency 
of the FHP algorithm itself, although it is still considerably more robust 
than mesh-based methods when there are large variations in fluid velocity 
or density. In addition, FHP LG simulations in 3D are complicated by the 
fact that there is no 3D lattice with an isotropic hydrodynamic limit, i.e. 
there will always be preferred directions for fluid flow. To get around 
this, one must carry out LG simulations in an isotropic 4D lattice and 
project the results back into 3D space, which again results in additional 
computational overhead compared to more conventional CFD methods. 
 

[30%] 
 



6. 
 
An equation of state relates the pressure, volume and temperature of a 
system in thermal equilibrium. A simple example of an equation of state 
that is applicable to non-interacting particles in the gas phase is the ideal 
gas equation: pV nRT= , where p is the pressure, V is the volume, n is 
the number of moles of ideal gas, R is the molar gas constant (8.314 J K–1 
mol–1 in conventional units) and T is the temperature. This equation is 
obeyed quite well for most gases at room temperature and pressure, and 
increasingly so as the pressure is decreased. However, at higher pressures 
and lower temperatures, interactions between the gas molecules become 
significant, and so a more complicated equation of state is required. 

 [10%] 
 

The canonical ensemble is defined by constant particle number, constant 
volume and constant temperature (NVT). In order to generate system 
configurations in the NVT ensemble, the standard constant energy 
(microcanonical) molecular dynamics algorithm must be modified so that 
particles can exchange thermal energy with a reservoir and thereby come 
to thermal equilibrium. Standard microcanonical MD solves Newton’s 
equations of motion with forces calculated from the derivative of the 
potential energy of the system (force field) using a finite-difference 
integration method. However, in canonical MD, these forces are 
supplemented by fictitious forces representing the exchange of energy 
with the reservoir at constant temperature. A convenient way to calculate 
the forces required to achieve constant temperature is to use an extended 
Lagrangian, which includes an extra coordinate ζ that evolves in time so 
as to minimise the difference between the instantaneous kinetic and 
statistical temperatures. The modified equations of motion become: 
 

{ }K S2
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/
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1ζ ( ) / 1
τ

i i i

i i i

m

T t T

=

= −

= −

r p
p F p  

 
where ri are the particle positions (with dotted quantities being the time 
derivatives), pi are the particle momenta, mi the particle masses, Fi the 
forces on particles arising from the derivative of the potential energy, τT 
being the thermostat relaxation time, TK the instantaneously measured 
kinetic temperature (relative to average kinetic energy of particles) and TS 
is the statistical temperature (a simulation parameter). 



 
A plot of the simulated data (V,p) for the van der Waals gas reveals the 
location of the point of inflection at T = 150 K. 

 
 
The position of the point of inflection at (0.096,48), hence the parameters 
a and b, can be found directly from the equation of state (*) by 
differentiation. 
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Hence, separating terms to opposite sides of the equality and dividing: 
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From graph above, Vc ≈ 0.096 dm3 mol–1 and pc ≈ 48 atm, which yield the 
following values of a and b when substituted into the above expressions. 
 

( ) 6 2

0.096 /3 0.032 atm
9 0.032 0.0821 150 2 0.032 48 1.331 atm dm  mol

2

b

a −

= =
×

= × − × × =
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Thermodynamic integration can be used to find the change in Helmholtz 
free energy if the system pressure is known as function of the volume. 
From the master equation for Helmholtz free energy: 
 

2

1

d d d d
V

NT V

FF S T p V p F p V
V

∂⎛ ⎞= − − ⇒ = − ∴∆ = −⎜ ⎟∂⎝ ⎠ ∫  

 
In this case, the parameterised van der Waals equation of state can be 
used to find the free energy change, as follows: 
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7. 
 
Assumptions:  Spherical cluster approximation (cluster is a sphere) 
   Liquid bulk density inside and vapour pressure outside 
 
Vapour to bulk liquid:    Formation of a surface 
(Favoured)      (Unfavoured) 
 
 
 
 
 
 
 
 
 
 
 
 
 

[20%] 
 

(a) 
 
 
 
 
Differentiate ∆G and set equal to zero to obtain the maximum point. 
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For clusters with fewer than n* atoms, the energy cost of making the 
surface is higher the energy saving of forming a bulk liquid. 
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(b) 
 
The two elements have fundamentally different bonding (silicon bonds 
covalently, while Au bonds metallically) so they cannot form a single-
phase solid solution by substitution of one element for another in the 
crystal lattice (immiscible, no solubility). 
 
(i) L  
(ii) L + Au 
(iii) Au + Si 
(iv) L + Si   

[15%] 
 

(c) 
 
The vapour-liquid-solid (VLS) process for nanowire growth can be 
described as follows, referring to a schematic plot of phase diagram: 
 
 
 
 
 
 
 
 
 
1.  Pure gold particle 
2.  Feed gas breaks down on gold and Si enters gold particle.  Gold 

particle melts to form (L + Au) 
3.  More Si arrives at particle and the particles become molten alloy (L) 
4.  Bi-phasic region – Si begins to precipitate out of the droplet at the 

droplet-substrate interface 
5.  Precipitation continues at existing interface 

[20%] 
(d)  360°C (eutectic temperature) 
        
Diameter is controlled by gold particle size/templating in pores  
Length is controlled by reaction time. 
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