Tricks of the Trade

Chris J. Pickard

Theory of Condensed Matter Cavendish Laboratory Cambridge University

cjp20@cam.ac.uk

http://www.tcm.phy.cam.ac.uk/~cjp20

- Lecture II: Tricks of the trade
 - Finding the groundstate
 - Forces and stresses
 - Geometry optimisation
 - Molecular dynamics
 - Application: Structural properties of lanthanides and actinides
 - The CASTEP code

We made lots of progress but ...

these approximations are not enough to allow calculations for large systems.

- Conventional matrix diagonalisation
 - too slow for large basis set
 - calculates too many (unoccupied) states

CALCULATING THE TOTAL ENERGY

- Eigenvalue term
- Potential term
- Ion-ion term

To get eigenvalues we use:

$$H|\psi_i
angle=\epsilon_i|\psi_i
angle \ H=-rac{1}{2}
abla^2+V({f r})$$

- Most stable computational approach is to directly minimise E
- Do not solve $H|\psi_i\rangle=\epsilon_i|\psi_i\rangle$ directly
- Use iterative diagonalisation for just the states that we need

Operating with H on $|\psi_i angle$

- H divides into two parts
 - The potential diagonal in real space
 - The kinetic energy diagonal in reciprocal space
- • Use FFTs — $N \ln N$ — and evaluate each term in appropriate space
- ullet $V({f r})$ in real space
- ullet Kinetic energy in reciprocal space $rac{1}{2}|\mathbf{k}+\mathbf{G}|^2$

EVALUATING THE ENERGY

- ullet The eigenvalue sum $\epsilon_i = \langle \psi_i | H | \psi_i
 angle$
- Potential energy product of potential with density
- $E_{ion-ion}$ slow convergence in real and reciprocal space so use Ewald identity (splits sum between two spaces)

ITERATIVE DIAGONALISATION

ullet Need energy gradient for each band i and iteration m

$$\begin{split} |\eta_i^m\rangle &= -(H-\epsilon_i^m)|\psi_i^m\rangle \\ \epsilon_i^m &= \langle \psi_i^m|H|\psi_i^m\rangle \end{split}$$

- Antisymmetry of wavefunctions → orthogonality of bands at each k-point
- Enforce orthogonality via the gradient ...

$$|{\eta'}_i^m\rangle = |\eta_i^m\rangle - \sum_j \langle \psi_j |\eta_i^m\rangle |\psi_j\rangle$$

 Orthogonalisation is costly — dominates in the limit of a very large system

- Conjugate gradients use history to ensure independence (exact for quadratic functions)
- Preconditioning to encourage all components of the wavefunction to converge at comparable rates

— e.g.
$$\mathbf{F}_i = -rac{\partial E}{\partial \mathbf{R}_i}$$

The Hellmann-Feynman theorem

The total energy is:

$$E = \langle \Psi | H | \Psi \rangle$$

Differentiate wrt α

$$\frac{\partial E}{\partial \alpha} = \langle \frac{\partial \Psi}{\partial \alpha} | H | \Psi \rangle + \langle \Psi | \frac{\partial H}{\partial \alpha} | \Psi \rangle + \langle \Psi | H | \frac{\partial \Psi}{\partial \alpha} \rangle$$

While,
$$H|\Psi\rangle=E|\Psi\rangle$$
 so

$$\frac{\partial E}{\partial \alpha} = \langle \Psi | \frac{\partial H}{\partial \alpha} | \Psi \rangle + E \frac{\partial}{\partial \alpha} \langle \Psi | \Psi \rangle = \langle \Psi | \frac{\partial H}{\partial \alpha} | \Psi \rangle$$

UNIVERSITY OF CAMBRIDGE

EXPLORING THE BORN-OPPENHIEMER SURFACE

- \bullet Born-Oppenheimer approx. \rightarrow ionic positions are parameters
- \bullet Generally want to explore 3M parameter space
- Molecular dynamics
 - integrate Newtonian equations of motion
- Geometry optimisation
 - Local or global energy minima
 - Parameter space too big (can't use e.g. simulated annealing)
 - Place in basin of attraction and use steepest descents, conjugate gradients or BFGS

EXAMPLE: STRUCTURAL PROPERTIES OF LANTHANIDE AND ACTINIDE COMPOUNDS

All-electron approaches to f-electrons

- Numerous all-electron, first principles studies
 - (FP)-LMTO
 - -(F)(L)APW
- many accurate and relevant results
 - e g low pressure phases of elemental lanthanides
- in general restricted to small size and high symmetry
- calculations of stresses not routine
- claim: electronic/magnetic properties require more than LDA/GGA
 - SIC etc.

- To build confidence, we have performed calculations on a spectrum of compounds
 - UO, UO $_2$, UO $_3$, U $_3$ O $_8$, UC $_2$, α -CeC $_2$, CeB $_6$, CeO $_2$, NdB $_6$, TmOI, LaBi, LaTiO $_3$, YbO, and elemental Lu.
- Example: Uranium oxides
 - UO₂: $a_{\rm exp}\approx 5.458$ Å (depends on degree of reduction of U⁴⁺ to U⁶⁺), $a_{\rm theo}=5.474$ Å
 - UO: $a_{\rm exp} = 4.92(2)$ Å, $a_{\rm t\,heo} = 4.961$ Å
 - Three polymorphs of UO_3 : agreement, apart from O(z) internal co-ordinate in one of them. We suggest theory is more reliable.
 - Mixed valence U_3O_8 $P\bar{6}m2$: good agreement (within 0.01 Å) for lattice parameters, and fractional co-ordinates within 0.002)
- LDA vs. GGA : Lu metal $V_0 = 59.80 \text{ Å}^3$ (exp.), 59.014 Å 3 (GGA), and 53.373 Å 3 (LDA)

12

THE CASTEP CODE

The CASTEP planewave pseudopotential code allows the calculation of the total energy of a system (and various derivatives) using:

- Periodic BCs
- Supercells
- Planewaves
- Pseudopotentials (NC and USPs)
- Parallel code
- User interface (CERIUS² by MSI)

- Not just equilibrium constants are reproduced
- Elastic constants are calculated using the method of imposed strains
- Results consistent with accuracy expected from DFT — and specifically previous all-electron studies (Trygg et al (1995) and Dudarev et al(1998))

Table 1: The elastic constants (in GPa) of UO_2 where $C' = \frac{1}{2}(C_{11} - C_{12})$, $B = \frac{2}{2}(C_{11} + 2C_{12})$.

where $c = {}_{2}(c_{11} \ c_{12}), \ b = {}_{3}(c_{11} + 2c_{12}).$					
	C_{11}	C_{12}	C_{44}	C,	В
exp	389.3	118.7	59.7	135.3	208.9
calc	318.2	96.0	43.1	111.1	170.1

