The planewave pseudopotential method

Chris J. Pickard

Theory of Condensed Matter Cavendish Laboratory Cambridge University

cjp20@cam.ac.uk

http://www.tcm.phy.cam.ac.uk/~cjp20

The Quantum World

• In nearly all cases, treating the electrons as quantum mechanical alone is enough.

Overview

- Lecture I: The basic ingredients
 - Why total energy calculations?
 - DFT and the Kohn-Sham equations
 - Periodic boundary conditions and super-cells
 - Plane waves as a basis set
 - Pseudopotentials
 - How good is it?
- Lecture II: Tricks of the trade
 - Finding the groundstate
 - Forces and stresses
 - Geometry optimisation
 - Molecular dynamics
 - Application: Structural properties of lanthanides and actinides
 - The CASTEP code

- Lecture III: Analysis of results
 - Population analysis
 - Spectroscopies
 - Application: theoretical strength and cleavage of diamond
- Lecture IV: Applications
 - Core level and optical spectroscopies
 - Systematic prediction of crystal structures

- Many properties depend on the total energy of a system
 - equilibrium lattice constants (density)
 - bulk moduli
 - phonons
 - elastic constants
 - phase transitions
 - chemistry, bonding etc.

UNIVERSITY OF CAMBRIDGE

DENSITY FUNCTIONAL THEORY

• Hohenberg and Kohn proved that -

"the total energy of an electron gas (even in the presence of a static external potential) is a unique function of the electron density, the minimum value of the functional is the ground state energy and the corresponding density yields the exact single particle ground-state density".

- gives hope of dealing with exchange and correlation
- but the functional is not known → Kohn-Sham
- a functional is a function of a function

$$E[n(\mathbf{r})] = T[n(\mathbf{r})] + E_{\text{Ext}}[n(\mathbf{r})] + E_{\text{H}}[n(\mathbf{r})] + E_{\text{XC}}[n(\mathbf{r})]$$

Solve -

$$\begin{split} H\Psi &=& \sum_{i=1}^{N} (\frac{-\hbar^2}{2m} \nabla_i^2 \Psi \\ &-& Ze^2 \sum_{\mathbf{R}} \frac{1}{|\mathbf{r_i} - \mathbf{R}|} \Psi) \\ &+& \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r_i} - \mathbf{r_j}|} \Psi \\ &=& E\Psi, \end{split}$$

where Ψ is the manybody wavefunction

- The red term describes correlation
 - origin well known
 - very difficult to account for
 - still an area of active research for physicists (using e.g. QMC and GW techniques)

THE KOHN-SHAM EQUATIONS

$$\begin{split} E[\{\psi_i\}] &= 2\sum_i \int \psi_i [\frac{-\hbar^2}{2m}] \nabla^2 \psi_i \mathbf{d^3r} \\ &+ \int V_{ion}(\mathbf{r}) n(\mathbf{r}) \mathbf{d^3r} \\ &+ \frac{e^2}{2} \int \frac{n(\mathbf{r}) n(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|}) \mathbf{d^3r} \mathbf{d^3r'} \\ &+ E_{XC}[n(\mathbf{r})] + E_{ion}(\mathbf{R_i}) \end{split}$$

$$n(\mathbf{r}) = 2 \sum_i |\psi_i(\mathbf{r})|^2$$

$$[rac{-\hbar^2}{2m}]
abla^2 + V_{ion}(\mathbf{r}) + V_H(\mathbf{r}) + V_{XC}(\mathbf{r})]\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r})$$

$$V_{XC}(\mathbf{r}) = rac{\delta E_{XC}[n(\mathbf{r})]}{\delta n(\mathbf{r})} \dots$$

ullet We don't know $E_{XC}[n({f r})]$ and hence $V_{XC}({f r})$

ullet The functional was partitioned so that $E_{XC}[n({f r})]$ would be a (relativly) small contribution

• Use an approximation

Local Density Approximation (LDA)

- Generalised Gradient Approximation (GGA)

* PW91, PBE, BLYP, B3LYP and so on . . .

• Parameterised on Quantum Monte Carlo results

• Ab initio GGAs are generally better for energies, and not worse for structures

• We have a problem of the form:

$$\hat{H}|\psi_i\rangle = \epsilon_i |\psi_i\rangle$$

• The wavefunctions are orthonormal:

$$\langle \psi_i | \psi_j \rangle = \delta_{ij}$$

• If we choose a basis, we can construct a Hamiltonian as a matrix and diagonalise

energy level \rightarrow eigenvalue wavefunction/orbital \rightarrow eigenvector

8

10

Being (self) consistent

- ullet $V_H({f r})$ and $V_{XC}({f r})$ depend on $n({f r})$
- $n(\mathbf{r})$ depends on $\{\psi_i(\mathbf{r})\}$
- But we are trying to find $\{\psi_i(\mathbf{r})\}$ and the corresponding energy levels we need self-conistency

JUST A FEW ATOMS

- Use a local basis set
 - possibly based on atomic orbitals
 - maybe some mathematically simple set like gaussians
- Build the Hamiltonian matrix
- Diagonalise
- This scales at $O(N^3)$

- Crystals contain $\approx 10^{23}$ atoms
- ullet Direct diagonalisation of even a cluster of 10^3 atoms would be very costly
- So is it impossible?
- No!! Use symmetry . . .
 - crystals have translational symmetry (definition)
 - symmetry leads to a new quantum number, k
 - use periodic boundary condition (PBCs) and you just have to worry about the atoms in the unit cell of the crystal

• Leads to Bloch's Theorem

$$\Psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}.\mathbf{r}} U_{n\mathbf{k}}(\mathbf{r})$$

$$U_{n\mathbf{k}}(\mathbf{r}) = U_{n\mathbf{k}}(\mathbf{r} + \mathbf{R})$$

- For an extended system
 - Transforms problem from solving infinite number of states to one of discrete bands and infinite number of k-points.
 - but $E(\mathbf{k})$ etc. is smooth, so evaluate at relatively small number of \mathbf{k} -points
- k-point sampling becomes an issue
- Metals require very high sampling density

1

14

UNIVERSITY OF CAMBRIDGE

13

THE BANDSTRUCTURE PICTURE

FCC

Hexagonal

Simple Cubic

• A band-structure plot for diamond compared with the total density of states

- Aperiodic systems can also be treated within periodic boundary conditions
- The super-cell chosen must be large enough that the properties of interest are converged with respect to cell size

16

18

CORE AND VALENCE ELECTRONS

 Core electrons don't take part in bonding (definition!)

Level	Energy(Ry)	Occupation
1s	-19.90408	2.000
2s	-1.00279	2.000
2p	-0.39838	2.000

$$\Psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}U_{n\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{G}} U_{n\mathbf{k}}^{\mathbf{G}} e^{i(\mathbf{G}+\mathbf{k})\cdot\mathbf{r}}$$

- The natural basis set for a crystal
- PBCs lead to a discrete set
- Cutoff energy defines set convergence well defined

- Advantages FFTs, force calculation, orthogonality and simplicity
- Disadvantages BIG

17

PSEUDOPOTENTIALS

- Too many planewaves needed for core states, and related orthogonality
- Physical properties depend on valence electrons throw away cores
- Pseudopotential constructed so that
 - Scattering properties preserved
 - Potential and Ψ identical outside core
 - Norm conserved (can be relaxed)
- Transferability
- Local/Non-local and realspace potentials . . .

UNIVERSITY OF CAMBRIDGE

THERE IS A LOT MORE ...

- Conventional diagonalisation is too slow
- We can calculate forces and stresses directly
- And we can calculate many other properties
- All this and more in the next lectures
- But does it work?

- Relax norm conservation soft for 2p,3d,4f
- Augment to replace lost charge
- Multiple projectors at any energy
- Accurate, soft and transferable

Pseudized and all electron valence states for Lutetium

Material	Expt	Theory	Delta	Туре
La Bi	6.57	6.648	1.2%	alloy
IrAlg(a)	4.246	4.2	-1.1%	alloy
IrAl ₃ (c)	7.756	7.618	-1.8%	alloy
NiAs(a)	3.602	3.549	-1.5%	alloy
NiAs(c)	5.009	5.031	0.4%	alloy
NpAs	3.31	3.415	3.1%	alloy
YPo	6.251	6.288	0.6%	alloy
Ru As ₂ (a)	5.4279	5.34	-1.6%	alloy
Ru As ₂ (b)	6.1834	6.13	-0.9%	alloy
Ru As ₂ (c)	2.9685	2.985	0.6%	alloy
Scaln(a)	6.421	6.418	0.0%	alloy
Sc3ln(c)	5.183	5.183	0.0%	alloy
CaF ₂	5.4626	5.496	0.6%	halide
BCl ₃ (a)	6.08	6.216	2.2%	halide
BCl ₃ (c)	6.55	6.632	1.2%	halide
LiBr	5.489	5.467	-0.4%	halide
CsCl	4.123	4.167	1.1%	halide
Lil	6	6	0.0%	halide
KF	5.33	5.354	0.4%	halide
KrF2	1.89	1.916	1.4%	halide
Lil	3.5092	3.45	-1.7%	halide
Nal	6.462	6.537	1.1%	halide
RbBr	6.86	6.979	1.7%	halide
TICI	3.835	3.875	1.0%	halide
YF ₃ (a)	6.353	6.362	0.1%	halide
$YF_3(b)$	6.85	6.903	0.8%	halide
$YF_3(c)$	4.393	4.471	1.7%	halide
Ag	4.086	4.112	0.6%	metal
ΑĬ	4.0495	3.965	-2.1%	metal
As(a)	3.7595	3.7048	-1.5%	metal
As(c)	10.4573	10.0825	-3.7%	metal
Au	4.0783	4.1528	1.8%	metal
Ba	5.019	4.992	-0.5%	metal
Be(a)	2.2856	2.2788	-0.3%	metal
Be(c)	3.5832	3.579	-0.1%	metal
C(a)	2.46	2.439	-0.9%	metal
C(c)	6.8	7.109	4.3%	metal
Ca	5.582	5.506	-1.4%	metal
Cd(a)	2.9788	3.035	1.9%	metal
Cd (c)	5.6167	5.665	0.9%	metal

Material	Expt	Theory	Delta	Type
Co(a)	2.507	2.481	-1.0%	metal
Co(c)	4.069	4.018	-1.3%	metal
Co	3.544	3.494	-1.4%	metal
Cr	2.8846	2.8509	-1.2%	metal
Cr ₃ Si	4.555	4.525	-0.7%	metal
Cs	6.14	6.14	0.0%	metal
Cu	3.6147	3.631	0.4%	metal
Fe	2.8664	2.8826	0.6%	metal
Hf(a)	3.1946	3.082	-3.7%	metal
Hf(c)	5.0511	4.9605	-1.8%	metal
lr	3.8389	3.8547	0.4%	metal
K	5.32	5.311	-0.2%	metal
La(a)	3.77	3.824	1.4%	metal
La(c)	12.131	12.539	3.3%	metal
Mg(a)	3.2094	3.209	0.0%	metal
Mg(c)	5.2105	5.21	0.0%	metal
Мо	3.1469	3.1588	0.4%	metal
Na	4.2906	4.312	0.5%	metal
Nb	3.3006	3.3153	0.4%	metal
Ni	3.524	3.5	-0.7%	metal
Os(a)	2.7353	2.7455	0.4%	metal
Os(c)	4.3191	4.3339	0.3%	metal
Pb	4.9502	5.046	1.9%	metal
Pd	3.8907	3.903	0.3%	metal
Po	3.345	3.308	-1.1%	metal
Pt	3.9239	3.971	1.2%	metal
Rb	5.7	5.7	0.0%	metal
Re(a)	2.76	2.758	-0.1%	metal
Re(c)	4.458	4.446	-0.3%	metal
Rh	3.8044	3.853	1.3%	metal
Ru(a)	2.7058	2.72	0.5%	metal
Ru(c)	4.2816	4.289	0.2%	metal
Sc(a)	3.308	3.309	0.0%	metal
Sc(c)	5.2653	5.178	-1.7%	metal
Sn	6.4912	6.408	-1.3%	metal
Sr	6.0849	6.085	0.0%	metal
Ta	3.3026	3.2522	-1.5%	metal
Tc(a)	2.735	2.751	0.6%	metal
Tc(c)	4.388	4.392	0.1%	metal
Te(a)	4.456	4.437	-0.4%	metal
Te(c)	5.921	5.9	-0.4%	metal

Material	Expt	Theory	Delta	Туре
Al ₂ O ₃ (a)	4.759	4.703	-1.2%	oxide
$Al_2O_3(c)$	12.991	12.871	-0.9%	oxide
BaO	5.523	5.562	0.7%	oxide
BeO(a)	2.6979	2.738	1.5%	oxide
BeO(c)	4.3772	4.446	1.5%	oxide
BiOF(a)	3.7469	3.633	-3.1%	oxide
BiOF(c)	6.226	6.267	0.7%	oxide
Bi_2O_3	5.45	5.36	-1.7%	oxide
CaO	4.8105	4.817	0.1%	oxide
Cu_2O	4.2696	4.2533	-0.4%	oxide
HgO(a)	6.6129	6.756	2.1%	oxide
HgO(b)	5.52	5.668	2.6%	oxide
HgO(c)	3.5219	3.65	3.5%	oxide
MgO	4.2112	4.277	1.5%	oxide
NbO	4.2103	4.2344	0.6%	oxide
$SiO_2(a)$	4.91	4.987	1.5%	oxide
SiO ₂ (c)	5.402	5.459	1.0%	oxide
$SnO_2(a)$	4.7373	4.709	-0.6%	oxide
$SnO_2(c)$	3.1864	3.15	-1.2%	oxide
SrO _	5.13	5.17	0.8%	oxide
TaO	4.422	4.49	1.5%	oxide
$TiO_2(a)$	4.594	4.625	0.7%	oxide
$TiO_2^-(c)$	2.959	2.965	0.2%	oxide
ZrO_2^-	5.07	5.116	0.9%	oxide
Ar	5.256	5.256	0.0%	rare
He(a)	3.555	3.556	0.0%	rare
He(c)	5.798	5.798	0.0%	rare
Ne	4.462	4.38	-1.9%	rare
Ra	5.148	5.288	2.6%	rare
GaAs	5.653	5.663	0.2%	semiconductor
BN	3.615	3.598	-0.5%	semiconductor
BeS	4.855	4.871	0.3%	semiconductor
C (dia mond)	3.556	3.539	-0.5%	semiconductor
CdSe	6.05	6.146	1.6%	semiconductor
GaN	4.5	4.535	0.8%	semiconductor
GaP	5.4505	5.4956	0.8%	semiconductor
Ge	5.6575	5.572	-1.5%	semiconductor
HgTe	6.4623	6.585	1.9%	semiconductor
HgS	5.8517	5.978	2.1%	semiconductor
HgSe	6.084	6.211	2.0%	semiconductor
In As	6.05838	6.1808	2.0%	semiconductor

Material	Expt	Theory	Delta	Туре
Ti(a)	2.9506	2.936	-0.5%	metal
Ti(c)	4.6788	4.658	-0.4%	metal
TI(a)	3.4566	3.5948	3.8%	metal
TI(c)	5.5248	5.5436	0.3%	metal
V	3.028	3.019	-0.3%	metal
W	3.165	3.222	1.8%	metal
Y(a)	3.6451	3.6376	-0.2%	metal
Y(c)	5.7305	5.672	-1.0%	metal
Zn(a)	2.6649	2.641	-0.9%	metal
Zn(c)	4.9468	4.865	-1.7%	metal
Zr(a)	3.2312	3.2411	0.3%	metal
Zr(c)	5.1477	5.2055	1.1%	metal
CsH	6.387	6.387	0.0%	misc
$HfGe_2(a)$	3.8154	3.665	-4.1%	misc
$HfGe_2^-(b)$	15.004	14.567	-3.0%	misc
$HfGe_2(c)$	3.7798	3.635	-4.0%	misc
$LaTiO_3(a)$	5.6253	5.602	-0.4%	misc
$LaTiO_3(b)$	5.5918	5.712	2.1%	misc
LaTiO3 (c)	7.9047	7.899	-0.1%	misc
$MnB_4(a)$	5.5029	5.427	-1.4%	misc
$MnB_4(b)$	5.3669	5.278	-1.7%	misc
$MnB_4(c)$	2.9487	2.914	-1.2%	misc
ZrN	4.62	4.634	0.3%	misc
$OsP_2(a)$	5.1012	5.05	-1.0%	misc
$OsP_2(b)$	5.9022	5.8886	-0.2%	misc
$OsP_2(c)$	2.9183	2.9366	0.6%	misc
PtS(a)	3.48	3.515	1.0%	misc
PtS(c)	6.11	6.12	0.2%	misc
Re ₃ B(a)	2.89	2.889	0.0%	misc
$Re_3B(b)$	9.313	9.405	1.0%	misc
Re ₃ B(c)	7.258	7.235	-0.3%	misc
$RhTe_2$	6.4394	6.48	0.6%	misc
$TcOF_4(a)$	9	9.22	2.4%	misc
$TcOF_4(c)$	7.92	8.05	1.6%	misc
UN_2	5.31	5.254	-1.1%	misc
UC ₂ (a)	3.517	3.524	0.2%	misc
UC ₂ (c)	5.987	5.946	-0.7%	misc
VN	4.13	4.137	0.2%	misc
WC(a)	2.906	2.949	1.5%	misc
WC(c)	2.837	2.873	1.3%	misc
Ag ₂ O	4.72	4.788	1.4%	oxid e

	UNIVERSITY OF
	UNIVERSITY OF CAMBRIDGE

Material	Expt	Theory	Delta	Туре
InP	5.86875	5.9489	1.3%	semiconductor
PbSe	6.128	6.1508	0.4%	semiconductor
GaSb	6.0954	6.1323	0.6%	semiconductor
AISb	6.1355	6.078	-0.9%	semiconductor
ZnSe	5.6676	5.7113	0.8%	semiconductor
BeSe	5.139	5.194	1.1%	semiconductor
Si	5.4307	5.44	0.2%	semiconductor
Zn Te	6.101	6.142	0.7%	semiconductor
ZnS	5.4193	5.4839	1.2%	semiconductor
$CoSi_2$	5.36	5.3	-1.1%	silicide
$FeSi_2(a)$	2.684	2.649	-1.3%	silicide
$FeSi_2(c)$	5.128	5.037	-1.8%	silicide
$MoSi_2(a)$	3.2	3.195	-0.2%	silicide
$MoSi_2(c)$	7.85	7.791	-0.8%	silicide
PdSi(a)	5.6173	5.6123	-0.1%	silicide
PdSi(b)	3.3909	3.3514	-1.2%	silicide
PdSi(c)	6.1534	6.1534	0.0%	silicide

Milman, Winkler, White, Pickard, Payne, Akhmatskaya, and Nobes.
Electronic structure, properties and phase stability of inorganic crystals: The pseudopotential plane-wave approach.

International Journal of Quantum Chemistry, 77:895-910, 2000.

SUMMARY

- We got all this from
 - Schrödinger's Equation
 - a many-body uniform electron gas
 - some clever approximations

A comparison of theory with experiment

