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1 The planewave pseudopotential method

In the following, the problem of evaluating quantum mechanically the ground-
state electronic density and total energy of a system of interacting electrons
for a given nuclear configuration is discussed. While the core of the method-
ology is presented here, more detailed reviews can be found in Jones and
Gunnarsson [16] (on the Density Functional formalism) and in Payne et al
[24] (on its applications to first principles molecular dynamics).

1.1 The many-body Schrodinger equation

The behaviour of a system of N electrons can be predicted simply by solving
the Schrodinger Equation for the system:

HU = EV (1)

The problems arise in attempting to solve this equation. W is the many-
body wavefunction and is an anti-symmetric function (to satisfy the Fermi
statistics of electrons) of the electron co-ordinates {r; : i = 1, N}, and the
Hamiltonian, H, is given by:

= —— Z Vrl + Ve ({r:}) + Ve e({r:}) (2)



The eigenvalue E is the total energy of the system, essentially determined by
the external potential V,,; which describes the Coulomb interaction between
the electrons and a given configuration of nuclei. The term V,_. gives the
electron-electron Coulomb interaction, and it is this term which introduces
the coupling between the electronic co-ordinates, and precludes a straight-
forward separation of the many-body wavefunction which would make the
solution of the problem very simple computationally.

1.2 Density Functional Theory

It was noted that the term V,_. in the Schrodinger Equation introduces a
coupling between the electronic co-ordinates of the many electrons in the
system. This coupling is often referred to as “correlation” — as an electron
moves the other electrons feel its Coulomb potential, experience a force and
move in response. Hence the motion of the electrons is correlated. Although
the physics is straightforward, the mathematics of the problem becomes in-
tractable for all but the simplest systems. A step towards the solution of
this problem was made by Hohenberg and Kohn [14]. They introduced the
concept of the electronic density n(r) as a basic variable, within the frame-
work of density functional theory (DFT). They showed that the ground-state
total energy E could be written as a functional of the ground-state electronic
density,

Eln(r)] = Fln(r)] + / Veat(r)n(r)d’r. (3)

where F[n(r)] is a universal functional, so that it is V. (r) which uniquely
describes any particular physical system. Hohenberg and Kohn also showed
that the density which minimised E in Equation 3 is the ground-state density.
Unfortunately the functional is not known, and hence DFT is of little use in
this form.

A practical scheme for DFT calculations became possible following the
work of Kohn and Sham [19]. They chose to write the density in terms of a
set, of orthonormal functions, one for each of the N electrons in the system.

n(r) = Zl |6i(r)[? (4)
F[n(r)] is separated into three terms:
Fln(r)] = Ts[n(r)] + En[n(r)] + Excln(r)], (5)
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where T’ is the kinetic energy term,
h2
Ty = Z o / SVl (6)

This is not equal to the true electronic kinetic energy for the system, but it is
of similar magnitude and most importantly it can be computed exactly. It is
known as the non-interacting kinetic energy. Previous approaches to approx-
imating the functional F[n(r)] (e.g. that of Thomas-Fermi [16]) attempted
to approximate the kinetic energy purely in terms of the density. These
approaches failed, since the kinetic energy makes up large part of the total
energy, and the approximations used did not give an accurate enough value
for the kinetic energy. The term Ep in Equation 5 describes the Coulomb
energy of the electron density n(r), which is the same as the electron-electron
energy in the Hartree approximation:

Ey = % / / %d%d?’r’. (7)

Thus far the terms in the total energy have been defined to be exact. Ex¢
describes the rest of the contributions to the total energy, making up the
difference between Tg + Ex and the true functional F'. It is known as the
exchange-correlation energy, and is the only quantity that is approximated
in the Kohn-Sham approach. The most common, and straightforward, ap-
proximation to Ex¢ is the local density approximation (LDA). Within the
LDA, Ex¢ is written as,

Exe = / €e(n(r))n(r)dr, 8)

where €,.(n) is the exchange-correlation energy per unit volume of a homoge-
neous electron gas with a density of n. Monte Carlo total energy calculations
have been performed for uniform electron gases at a variety of electron den-
sities, and by subtracting Ts and Eg (which can both be straightforwardly
evaluated), €,. can be extracted and parameterised [4, 25]. Given that this
parameterisation is based on data for homogeneous charge densities, the LDA
might be expected only to be strictly valid for systems in which the charge
density is slowly varying, which is clearly not the case in a general cova-
lently bound solid. However, experience has shown the LDA to be a very
good approximation for a wide variety of systems in the solid state. This



success can be attributed to the fact that the LDA adheres to the sum-rule
for the exchange correlation hole[11]. It was the failure to ensure that this
sum-rule was satisfied which initially caused many supposed improvements
to the LDA to fail. Now generalised gradient approximations (GGA) have
been developed which obey the sum rule and provide better descriptions of
weak molecular bonds than the LDA [17, 26].

Having set up the formalism of Kohn and Sham, its practical implementa-
tion is now examined. Through Equation 4, the functional E[n] has now been
expressed in terms of a set of functions {¢;(r)}, thus minimising E[n] with
respect to this set, subject to the constraint that they remain orthonormal
leads to the set of equations:

—%Vz(ﬁi + Vi di + Vewrdi + Vachi = i, 9)
where,
Vir = 5575;’), (10)
and, $Ere
Vie = Sn(r) (11)

These equations are known as the Kohn-Sham equations and it can now
be recognised what role the set {#;(r)} is to play. The Kohn-Sham equa-
tions clearly resemble non-interacting single particle Schrédinger equations
— the {¢;} being eigenstates and the Lagrange multiplier ¢; the correspond-
ing eigenvalues. Thus the many-body problem described in Section 1.1 has
been mapped to one of a system of non-interacting single particles. These
single particle states will be interpreted in Section 2, and will turn out to
be the states used in the evaluation of optical and other spectral properties.
The potentials Vg and V. depend on the charge density which, through
Equation 4, depends of the Kohn-Sham eigenstates. Hence, the Kohn-Sham
equations must be solved self-consistently — the potential and the resulting
charge density must be consistent.

1.3 Periodic Boundary Conditions

For many years the electronic structure community focussed primarily on the
properties of perfect crystalline solids. This has lead to the use of periodic



boundary conditions in many electronic structure methods — as in the case
of the total energy pseudopotential method. The use of periodic boundary
conditions, through Bloch’s Theorem (see below) allow the treatment of the
very large number of electrons in a crystal. As solid state physicists have
moved to the study of less perfectly ordered systems, periodic boundary
conditions — although no longer strictly valid — have not been abandoned.
They permit the use of the highly desirable planewaves basis (see Section 1.4)
and give the choice as to whether the various terms in Equation 9 should be
evaluated in real or reciprocal space[15]. However, to study such problems,
aperiodicity must be approximated within the supercell approach.

1.3.1 Bloch’s theorem

For a one-electron Hamiltonian — for example that in Equation 9 — if the
potential has a lattice periodicity (i.e. U(r) = U(r + R) for all R where R is
a lattice vector), then the eigenstates of the Hamiltonian can be written as:

Wi (r) = e™ug(r), (12)

where uy is a cell periodic functions such that u(r) = up(r +R) for all
lattice vectors R. This implies that:

T+ R) = < RU(r) (13)

On substituting ¥} (r) into Equation 9 a new set of eigenequations for ug(r)
is found, one for each value of the continuous variable k. The problem of
solving for an infinite number of electrons has become one of calculating for a
finite number of bands at an infinite number of k-points[1]. However, physical
properties are expected to be smoothly varying functions of k and hence many
integrals can be well approximated by a finite sampling of k[2, 22, 23, 6, 5].

1.3.2 The supercell approximation

The application of periodic boundary conditions forces periodicity on the
system studied. This is significant, since many applications of electronic
structure calculations are on systems which do not have full three dimen-
sional translational symmetry — for example the study of defects, impurities
or even the interaction of molecules and surfaces. In the supercell approxima-
tion, aperiodic systems are approximated by enclosing the region of interest
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Figure 1: The supercell approximation —the modelling of aperiodicity within
periodic boundary conditions.

in either bulk material (for a defect) or vacuum (for a molecule) and then
periodically repeating this cell throughout space — see Figure 1. The super-
cell must be large enough for the fictitious interactions between neighbouring
cells to be negligible.

1.4 The planewave basis set

In order to solve the eigenvalue problem of Equation 9 numerically the eigen-
states {¢;} must be represented by some basis set. While there are many
possible choices, the one made here is to use planewaves as the basis. There
are many advantages in the use of planewaves. They form a mathemati-
cally simple basis, giving a very direct representation of the electronic states.
Planewave calculations can be taken systematically to convergence as a func-
tion of the size of the basis (see below), and when forces are needed for molec-
ular dynamics applications there is no need to consider the Pulay correction
forces [27]. This is since the planewaves are not centred about atoms, and so
the basis set need not change as the atoms move. However, planewave basis
sets require many more basis states per atom than atom-centred orbitals —
many hundreds per atom as opposed to of the order of ten. Without the use
of pseudopotentials (described in Section 1.5) the use of planewaves would
prove impractical in all but the very smallest systems.

The details of the planewave basis are now examined. Application of
periodic boundary conditions ensures a discrete (but still infinite) basis set.
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Figure 2: The planewave basis set is defined by the energy cutoff, E.;

The Kohn-Sham eigenstates are expressed as:

Ui(r) = %: ck(Ge e, (14)

where the sum is over all reciprocal lattice vectors G. To truncate the basis
set the sum is limited to a set of reciprocal lattice vectors contained within
a sphere with a radius defined by the cutoff energy, E..;:

2 2
Hence, the basis set is defined by the maximum kinetic energy component it
contains - see Figure 2. Physical quantities can be converged systematically
by increasing FE;.

While, in principle, all basis sets are equally accurate (so long as they
are complete) there a many reasons why a particular set might be chosen.
There can be a prejudice against the planewave basis — while the lack of a
centre for a planewave removes the need to calculate Pulay corrections this
lack of a centre can be looked at as a disadvantage. A calculation performed
using atom-centred orbitals as a basis (i.e. LCAO) produces wavefunctions
with an immediate interpretation in terms of the mixing of those orbitals,
the information contained within a wavefunction described in planewaves is
less directly accessible. However, work performed by the author (in collabo-
ration with Segall, Shah and Payne) [28, 29] shows that the straightforward
planewave representation of wavefunctions allows the same chemical popu-
lation analyses to be performed as in more traditional quantum chemistry
approaches.



1.5 The pseudopotential approximation

The electrons in an atom can be divided into two types — core electrons
and valence electrons. The core electrons are tightly bound to the nucleus,
while the valence electrons are more extended. A working definition for core
electrons is that they are the ones which play no part in the interactions
between atoms, while the valence electrons dictate most of the properties of
the material. It is common to make the frozen core approximation. The
core electrons are constrained not to differ from their free atomic nature
when placed in the solid state environment. This reduces the number of
electronic degrees of freedom in an all electron calculation. It is a very good
approximation. A different, but physically related, approach is taken in the
pseudopotential approximation[13, 7].

Since, in an all electron calculation, the valence electron wavefunctions
must be orthogonal to the core wavefunctions they necessarily have strong
oscillations in the region near the nucleus (see the all electron wavefunction
in Figure 3). Given that a planewave basis set is to be used to describe the
wavefunctions, these strong oscillations are undesirable — requiring many
plane waves for an accurate description. Further, these oscillations are of
very little consequence for the electronic structure in the solid, since they
occur close to the nucleus, and interact little with the neighbouring atoms.
In the pseudopotential approach only the valence electrons are explicitly con-
sidered, the effects of the core electrons being integrated within a new ionic
potential. The valence wavefunctions need no longer be orthogonal to the
core states, and so the orthogonality oscillations disappear, hence far fewer
plane waves are required to describe the valence wavefunctions. This modi-
fied ionic potential, or pseudopotential, is constructed in the following way.
An all electron DFT calculation is performed for an isolated atom. A core
radius 7. is decided upon — chosen so that the core regions of neighbouring
atoms will not overlap. The smaller the core radius the greater the transfer-
ability of the pseudopotential (i.e. the more chemical environments it will be
valid in). The all electron valence wavefunctions are altered within 7. to re-
move the nodal structure. These new functions are the pseudowavefunctions.
The Schrodinger equation is then inverted to find the potential that would
produce these wavefunctions — this is the pseudopotential. See Figure 3 for
a schematic representation of the potentials and wavefunctions (pseudo and
true). It is usual to ensure that the charge within the core radius is the same
for the pseudo and true wavefunctions — this is known as norm-conservation
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Figure 3: A schematic representation of the pseudopotential and pseudowave-
function. Not that the wavefunctions and potentials agree beyond the core
radius, r. and that the pseudowavefunctions are considerably smoother than
the true wavefunctions within r, — reducing the number of planewaves re-
quired.

and simplifies many aspects of the implementation of pseudopotentials and
also improves the energy range over which the pseudopotential is valid [12].
Since a pseudopotential must reproduce the correct phase shifts on scattering
at the core, and these phase shifts will be different for different angular mo-
mentum states, in general a pseudopotential will be non-local, with different
projectors for different angular momentum components.

In this work the non-local pseudopotentials are in the Kleinman-Bylander
form[18]: A

V= Woc + Z(Vi - Woc)Pl,ma (16)
Im

where the choice of V},. is arbitrary. Using the approach of Lee [20], in some
cases the potentials can be projector reduced. This consists of constructing
two of the V; to be very similar — both being eliminated by a single careful
choice of Vj,.. The method of Lee et al [21] has also been applied to optimise
the pseudowavefunction with respect to planewave cutoff.



1.6 Minimisation of the energy functional

Equation 9 shows that the total energy functional can be minimised by solv-
ing a Schrodinger-like eigenvalue problem for a set of single particle wave-
functions {¢; : i = 1,N}. Clearly, standard matrix-diagonalisation tech-
niques could be used, but it is highly inefficient in the case of a planewave
approach. There are many more planewaves per atom than electronic states
required. If M is the number of planewaves in a calculation, then typically
M/N > 100. Hence, diagonalising a M x M matrix results in M eigenstates
while only the lowest N are required. As an alternative, the total energy
functional is minimised using the idea first proposed by Car and Parinello
[3], the actual minimisation using a preconditioned conjugate gradient tech-
nique [24, 30]. These methods are implemented in the program CASTEP
(CAmbridge Serial Total Energy Package).

1.7 Forces, Stresses and Structural Optimisation

While the evaluation of single point total energies is useful in the investi-
gation of atomic structures, the real power of this ab initio method is only
evident when it is realized that the quantum mechanical forces can be found.
Feynman and Hellman independently showed how this could be done - using
what is now known as the Hellman-Feynman theorem [8]. In a similar way,
the quantum mechanical stresses on the unit cell of a periodic crystal can
be evaluated. Once these forces and stresses are available then the problem
becomes like any other in structural optimisation. Real dynamics can be
used, thus allowing first principles molecular dynamics to be performed, or
a fictitious dynamics invented to accelerate geometrical optimisation.

2 Bandstructure from the total energy method

It is well known that the Kohn-Sham eigenstates resulting from the diagonal-
isation of the Hamiltonian in Equation 9 do not formally correspond to the
single particle states required in the evaluation of the optical properties[16].
It should be remembered that they were simply introduced as a tool for
dealing with the kinetic energy term in the functional F[n(r)]; while is was
convenient that the result was a mapping of the many-body problem onto
one for single particles, those single particle states need not have any phys-
ical meaning. However, it is nearly universal to interpret these unoccupied
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Kohn-Sham eigenstates as the excited states required for our purposes, and
with good reason. In many cases, where this interpretation is made, very
good agreement is found between theory and experiment. It has been shown
by Godby et al [10] that, for Silicon at least, the difference between the
Kohn-Sham excitation energies and the correct quasiparticle energies can be
summarised by a rigid shift of the conduction band upwards with respect to
the valence band, the wavefunctions themselves being essentially unchanged.
This rigid shift, or “scissor operator”, is irrelevant for the calculation of
ELNES at the current level of theory since the absolute energy of the thresh-
old is not calculated. Reviews of the connection between DFT and excitation
energies are presented by Godby [9] and Jones and Gunnarsson [16].

Clearly, when a total energy calculation is performed there is no need to
evaluate the unoccupied eigenstates — only the valence states contribute to
the total energy. But, the calculation of spectral properties often requires
the unoccupied states. So, in practice two calculations are performed. In
the first the self consistent ground-state charge density is found, and then
a subsequent calculation is performed using the fixed Hamiltonian resulting
from that charge density. Many more eigenstates are found, at many more
k-points, since accurate Brillouin zone integrations are required.
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