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List of Symbols

Symbol Meaning

∆G
M

Molar Gibbs free energy of mixing

∆H
M

Molar enthalpy of mixing

∆S
M

Molar entropy of mixing

∆
e
G Excess Gibbs free energy per mole of solution

∆
e
H Excess enthalpy per mole of solution

∆
e
S Excess enthalpy per mole of solution

Mechanical Mixtures and Solutions

Consider the pure components A and B with molar free energies µo

A
and

µo

B
respectively. If the components are initially in the form of powders

then the average free energy of such a mixture of powders is simply:

G{mixture} = (1 − x)µo

A
+ xµo

B
(1)

where x is the mole fraction of B. It is assumed that the powder particles

are so large that the A and B atoms do not “feel” each other’s presence

via interatomic forces between unlike atoms. It is also assumed that the

number of ways in which the mixture of powder particles can be arranged

is not sufficiently different from unity to give a significant contribution

to a configurational entropy of mixing. Thus, a blend of powders which



obeys equation 1 is called a mechanical mixture. It has a free energy that

is simply a weighted mean of the components, as illustrated in Fig. 1a

for a mean composition x.

Fig. 1: (a) The free energy of a mechanical mixture,

where the mean free energy is simply the weighted

mean of the components. (b) The free energy of an

ideal atomic solution is always lower than that of a

mechanical mixture due to configurational entropy.

In contrast to a mechanical mixture, a solution is conventionally

taken to describe a mixture of atoms or molecules. There will in general

be an enthalpy change associated with the change in near neighbour

bonds. We shall show later that much more probable arrangements

of atoms become possible with intimate mixtures; this enters thermo-



dynamics via the configurational entropy, ensuring a reduction in free

energy on mixing even when there are no enthalpy changes. The free

energy of the solution is therefore different from that of the mechanical

mixture, as illustrated in Fig. 1b. The difference in the free energy be-

tween these two states of the components is the free energy of mixing

∆G
M

, the essential term in all thermodynamic models for solutions.

Ideal Solution

An ideal solution is one in which the atoms are, at equilibrium, dis-

tributed randomly; the interchange of atoms within the solution causes

no change in the potential energy of the system. For a binary (A–B)

solution the numbers of the different kinds of bonds can therefore be

calculated using simple probability theory:

N
AA

= z
1

2
N(1 − x)2

N
BB

= z
1

2
Nx2

N
AB

+ N
BA

= zN(1 − x)x

(2)

where N
AB

represents both A–B and B–A bonds which cannot be dis-

tinguished. N is the total number of atoms, z is a coordination number

and x the fraction of B atoms.

It is assumed that there is a random distribution of atoms in an

ideal solution. There is no enthalpy of mixing since there is no change

in energy when bonds between like atoms are broken to create those

between unlike atoms. This is why the atoms are randomly distributed

in the solution.



Configurational Entropy

Thus, the preparation of a binary alloy by this route would involve

taking the two elemental powders (A and B) and mixing them together

in a proportion whereby the mole fraction of B is x. The pure powders

have the molar free energies µo

A
and µo

B
respectively, as illustrated on

Fig. 1. The free energy of this mechanical mixture of powders is given

by:

G{mixture} = (1 − x)µo

A
+ xµo

B
− T∆S

M
(3)

where ∆S
M

is the change in configurational entropy as a consequence of

the mixing of the powders. We have assumed here, and shall continue

to assume, that there is no change in enthalpy in the process since the

atoms are indifferent to the their neighbours whatever they might be.

The change in configurational entropy as a consequence of mixing

can be obtained using the Boltzmann equation S = k ln{w} where w is

the number of configurations.

Suppose that there are m
A

atoms per particle of A, and m
B

atoms

per particle of B; the powders are then mixed in a proportion which

gives an average concentration of B which is the mole fraction x.

There is only one configuration when the heaps of powders are sep-

arate. When the powders are randomly mixed, the number of possible

configurations for a mole of atoms becomes (see Appendix):

(

N
a
([1 − x]/m

A
+ x/m

B
)
)

!

(N
a
[1 − x]/m

A
)! (N

a
x/m

B
)!

(4)

The numerator in equation 4 is the factorial of the total number of

particles and the denominator the product of the factorials of the A and



B particles respectively. Assuming large numbers of particles, we may

use Stirling’s approximation (ln y! = y ln y − y) to obtain the molar

entropy of mixing as

∆S
M

kN
a

=
(1 − x)m

B
+ xm

A

m
A
m

B

ln

{

N
a

(1 − x)m
B

+ xm
A

m
A
m

B

}

−
1 − x

m
A

ln

{

N
a
(1 − x)

m
A

}

−
x

m
B

ln

{

N
a
x

m
B

}

(5)

subject to the condition that the number of particles remains integral

and non–zero. This equation reduces to the familiar

∆S
M

= −kN
a
[(1 − x) ln{1 − x} + x ln{x}]

when m
A

= m
B

= 1.

Molar Free Energy of Mixing

The molar free energy of mixing is therefore:

∆G
M

= N
a
kT [(1 − x) ln{1 − x} + x ln{x}] (6)

Fig. 2 shows how the configurational entropy and the free energy of

mixing vary as a function of the concentration. ∆G
M

is at a minimum

for the equiatomic alloy because that is when the entropy of mixing

is at its largest; the curves naturally are symmetrical about x = 0.5.

The form of the curve does not change with temperature though the

magnitude at any concentration scales with the temperature. It follows

that at 0 K there is no difference between a mechanical mixture and an

ideal solution.



The chemical potential per mole for a component in an ideal solu-

tion is given by:

µ
A

= µo

A
+ N

a
kT ln{1 − x} (7)

and there is a similar equation for B. Since µ
A

= µo

A
+ RT ln a

A
, it

follows that the activity coefficient is unity.

Fig. 2: The entropy of mixing and the free energy of

mixing as a function of concentration in an ideal bi-

nary solution where the atoms are distributed at ran-

dom. The free energy is for a temperature of 1000 K.

Regular Solutions

There are no solutions of iron which are ideal. The iron–manganese

liquid phase is close to ideal, though even that has an enthalpy of mix-

ing which is about −860 J mol−1 for an equiatomic solution at 1000 K,

which compares with the contribution from the configurational entropy



of about −5800 J mol−1. The ideal solution model is nevertheless useful

because it provides reference. The free energy of mixing for a non–ideal

solution is often written as equation 7 but with an additional excess free

energy term (∆
e
G = ∆

e
H−T∆

e
S) which represents the deviation from

ideality:

∆G
M

= ∆
e
G + N

a
kT [(1 − x) ln{1 − x} + x ln{x}]

= ∆
e
H − T∆

e
S + N

a
kT [(1 − x) ln{1 − x} + x ln{x}]

(8)

One of the components of the excess enthalpy of mixing comes from

the change in the energy when new kinds of bonds are created during the

formation of a solution. This enthalpy is, in the regular solution model,

estimated from the pairwise interactions. The term “regular solution”

was proposed to describe mixtures whose properties when plotted var-

ied in an aesthetically regular manner; a regular solution, although not

ideal, would still contain a random distribution of the constituents. Fol-

lowing Guggenheim, the term regular solution is now restricted to cover

mixtures that show an ideal entropy of mixing but have a non–zero

interchange energy.

In the regular solution model, the enthalpy of mixing is obtained by

counting the different kinds of near neighbour bonds when the atoms are

mixed at random; this information together with the binding energies

gives the required change in enthalpy on mixing. The binding energy

may be defined by considering the change in energy as the distance

between a pair of atoms is decreased from infinity to an equilibrium

separation (Fig. 3). The change in energy during this process is the

binding energy, which for a pair of A atoms is written −2ε
AA

. It follows

that when ε
AA

+ ε
BB

< 2ε
AB

, the solution will have a larger than



random probability of bonds between unlike atoms. The converse is

true when ε
AA

+ ε
BB

> 2ε
AB

since atoms then prefer to be neighbours

to their own kind. Notice that for an ideal solution it is only necessary

for ε
AA

+ ε
BB

= 2ε
AB

, and not ε
AA

= ε
BB

= ε
AB

.

Fig. 3: Curve showing schematically the change in

energy as a function of the distance between a pair of

A atoms. −2ε
AA

is the binding energy for the pair of

atoms. There is a strong repulsion at close–range.

Suppose now that we retain the approximation that the atoms are

randomly distributed, but assume that the enthalpy of mixing is not

zero. The number of A–A bonds in a mole of solution is 1
2
zN

a
(1 − x)2,

B–B bonds 1
2
zN

a
x2 and A–B + B–A bonds zN

a
(1−x)x where z is the

co–ordination number. It follows that the molar enthalpy of mixing is

given by:

∆H
M

' N
a
z(1 − x)xω (9)

where

ω = ε
AA

+ ε
BB

− 2ε
AB

(10)

The product zN
a
ω is often called the regular solution parameter, which



in practice will be temperature and composition dependent. A com-

position dependence also leads to an asymmetry in the enthalpy of

mixing as a function of composition about x = 0.5. For the nearly

ideal Fe–Mn liquid phase solution, the regular solution parameter is

−3950+0.489T J mol−1 if a slight composition dependence is neglected.

A positive ω favours the clustering of like atoms whereas when it

is negative there is a tendency for the atoms to order. This second case

is illustrated in Fig. 4, where an ideal solution curve is presented for

comparison. Like the ideal solution, the form of the curve for the case

where ∆H
M

< 0 does not change with the temperature, but unlike the

ideal solution, there is a free energy of mixing even at 0 K where the

entropy term ceases to make a contribution.

Fig. 4: The free energy of mixing as a function of con-

centration in a binary solution where there is a pref-

erence for unlike atoms to be near neighbours. The

free energy curve for the ideal solution (∆H
M

= 0)

is included for comparison.



The corresponding case for ∆H
M

> 0 is illustrated in Fig. 5, where

it is evident that the form of the curve changes with the temperature.

The contribution from the enthalpy term can largely be neglected at very

high temperatures where the atoms become randomly mixed by thermal

agitation so that the free energy curve has a single minimum. However,

as the temperature is reduced, the opposing contribution to the free en-

ergy from the enthalpy term introduces two minima at the solute–rich

and solute–poor concentrations. This is because like–neighbours are

preferred. On the other hand, there is a maximum at the equiatomic

composition because that gives a large number of unfavoured unlike

atom bonds. Between the minima and the maximum lie points of in-

flexion which are of importance in spinodal decomposition, which will

be discussed later. Some of the properties of different kinds of solutions

are summarised in Table 1.

Type ∆S
M

∆H
M

Ideal Random 0

Regular Random 6= 0

Quasichemical Not random 6= 0

Table 1: Elementary thermodynamic properties of

solutions

Appendix: Derivation of equation 9

Energy, defined relative to infinitely separated atoms, before mixing:

1

2
zN

a

[

(1 − x)(−2ε
AA

) + x(−2ε
BB

)

]



Fig. 5: The free energy of mixing as a function of

concentration and temperature in a binary solution

where there is a tendency for like atoms to cluster.

The free energy curve for the ideal solution (∆H
M

=

0) is included for reference.

since the binding energy per pair of atoms is −2ε and 1
2
zN

a
is the

number of bonds. After mixing, the corresponding energy is given by:

1

2
zN

a

[

(1 − x)2(−2ε
AA

) + x2(−2ε
BB

) + 2x(1 − x)(−2ε
AB

)

]

where the factor of two in the last term is to count AB and BA bonds.

Therefore, the change due to mixing is the latter minus the former, i.e.

= −zN
a

[

(1 − x)2(ε
AA

) + x2(ε
BB

) + x(1 − x)(2ε
AB

)

− (1 − x)(ε
AA

) − x(ε
BB

)

]

= −zN
a

[

−x(1 − x)(ε
AA

) + −x(1 − x)(ε
BB

) + x(1 − x)(2ε
AB

)

]

= zN
a
(x)(1 − x)ω

given that ω = ε
AA

+ ε
BB

− 2ε
AB

.



Appendix: Configurations

Suppose there are N sites amongst which we distribute n atoms of

type A and N − n of type B (Fig. 6). The first A atom can be placed

in N different ways and the second in N − 1 different ways. These two

atoms cannot be distinguished so the number of different ways of placing

the first two A atoms is N(N − 1)/2. Similarly, the number of different

ways of placing the first three A atoms is N(N − 1)(N − 2)/3!

Therefore, the number of distinguishable ways of placing all the A

atoms is

N(N − 1) . . . (N − n + 2)(N − n + 1)

n!
=

N !

n!(N − n)!

Fig. 6: Configurations


