Question Sheet 1

1. Show that a system which contains concentration gradients can be at equilibrium.

2. Show that in a binary A, B solution,

$$\frac{\partial G}{\partial x} = \mu_B - \mu_A.$$

3. What factors contribute to the heat capacity of a polymer?

4. Explain why ordered crystals become disordered at a sufficiently high temperature.

5. What is an ideal solution? What is the probability of finding an A atom next to a B atom in an equiatomic ideal solution?

6. Calculate the equilibrium carbon concentration at any point given a fixed manganese concentration gradient in austenite. Austenite is an allotrope of iron. Assume that the activity (a) of carbon will tend to become uniform:

$$\ln\{a^0_C\} = \ln\{a^{Mn}_C\}$$
$$\ln\{\Gamma^0_C\} + \ln\{x^0_C\} = \ln\{\Gamma^{Mn}_C\} + \ln\{x^{Mn}_C\}$$

where a^0_C is the activity of carbon at zero Mn, a^{Mn}_C is the activity of carbon at a finite Mn concentration, x^0_C and x^{Mn}_C are the corresponding mole fractions of carbon, Γ^0_C and Γ^{Mn}_C are the corresponding activity coefficients. The activity coefficients can be expanded as follows (Kirkaldy and Baganis, Metall. Trans. 9A, 1978, 495):

$$\ln\{\Gamma_C\} = 8.1 \times x_C - 5 \times x_{Mn}$$

where x_{Mn} is the concentration of manganese.