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Lecture 5: Diffusion–Controlled Growth

Rate–Controlling Processes

An electrical current i flowing through a resistor will dissipate energy

in the form of heat (Fig. 1). When the current passes through two

resistors in series, the dissipations are iv1 and iv2 where v1 and v2 are

the voltage drops across the respective resistors. The total potential

difference across the circuit is v = v1 + v2. For a given applied potential

v, the magnitude of the current flow must depend on the resistance

presented by each resistor. If one of the resistors has a relatively large

electrical resistance then it is said to control the current because the

voltage drop across the other can be neglected. On the other hand, if

the resistors are more or less equivalent than the current is under mixed

control.

Fig. 1: Rate–controlling processes: electrical analogy.

This electrical circuit is an excellent analogy to the motion of an

interface. The interface velocity and driving force (free energy change)



are analogous to the current and applied potential difference respec-

tively. The resistors represent the processes which impede the motion

of the interface, such as diffusion or the barrier to the transfer of atoms

across the boundary. When most of the driving force is dissipated in

diffusion, the interface is said to move at a rate controlled by diffu-

sion. Interface–controlled growth occurs when most of the available free

energy is dissipated in the process of transferring atoms across the in-

terface.

These concepts are illustrated in Fig. 2, for a solute–rich precipitate

β growing from a matrix α in an alloy of average chemical composition

C0. The equilibrium compositions of the precipitate and matrix are

respectively, Cβα and Cαβ .

Fig. 2:Concentration profile at an α/β interface mov-

ing under: (a) diffusion–control, (b) interface–control,

(c) mixed interface.

A reasonable approximation for diffusion–controlled growth is that

local equilibrium exists at the interface. On the other hand, the concen-

tration gradient in the matrix is much smaller with interface–controlled

growth because most of the available free energy is dissipated in the



transfer of atoms across the interface.

Diffusion–Controlled Growth

Precipitates can have a different chemical composition from the

matrix. The growth of such particles (designated β) is frequently con-

trolled by the diffusion of solute which is partitioned into the matrix

(designated α).

As each precipitate grows, so does the extent of its diffusion field.

This slows down further growth because the solute has to diffuse over

ever larger distances. As we will prove, the particle size increases with

the square root of time, i.e. the growth rate slows down as time increases.

We will assume in our derivation that the concentration gradient in the

matrix is constant, and that the far–field concentration C0 never changes

(i.e. the matrix is semi–infinite normal to the advancing interface). This

is to simplify the mathematics without loosing any of the insight into

the problem.

For isothermal transformation, the concentrations at the interface

can be obtained from the phase diagram as illustrated below. The dif-

fusion flux of solute towards the interface must equal the rate at which

solute is incorporated in the precipitate so that:
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A second equation can be derived by considering the overall con-

servation of mass:
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On combining these expressions to eliminate ∆x we get:
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where v is the velocity. A more precise treatment which avoids the linear

profile approximation would have given:
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The growth rate decreases with time (Fig. 3). The physical reason

why the growth rate decreases with time is apparent from equation 1,

where the diffusion distance ∆x is proportional to the precipitate size

x (Fig. 3b). As a consequence, the concentration gradient decreases as

the precipitate thickens, causing a reduction in the growth rate.



Fig. 3: (a) Parabolic thickening during one dimen-

sional growth. (b) Increase in diffusion distance as

the precipitate thickens.


