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Lecture 3: Finite Elements

Steady–state heat flow through an insulated rod

Fig. 1: One–dimensional heat flow through an insu-

lated rod of cross–sectional area A and length L. The

finite element representation consists of two nodes i

and j.

Heat flow in one–dimension is described by Fourier’s law, in which

Q = −αA
dT

dx

where Q is the heat flow per second through a cross–sectional area A,

T is temperature, x is the coordinate along which heat flows and α is

the thermal conductivity of the material in which the heat flows.

Consider heat flow through the insulated rod illustrated in Fig. 1.

The heat flux entering the rod is Q1 (defined to be positive) and that



leaving the rod is Q2. The temperatures T1 and T2 are maintained

constant. The finite element representation consists of a single element

with two nodes 1 and 2 located at x1 and x2 respectively. We shall

assume that the temperature gradient between these nodes is uniform:

dT

dx
=

T2 − T1

x2 − x1

=
T2 − T1

L
and Q1 = −αA

T2 − T1

L

For steady–state heat flow,

Q1 + Q2 = 0

so that Q2 = −αA
T1 − T2

L

These two equations can be represented in matrix form as:

Q = kT
[

Q1

Q2

]

= −

αA

L

(
−1 1
1 −1

)

︸ ︷︷ ︸

k

[
T1

T2

]

(1)

where k is the thermal equivalent of the stiffness matrix.

Notice that Q1, the heat flux entering the element, is, according

to our convention, positive since T1 > T2 whereas Q2, that leaving the

element is negative.

Thermal Conduction in a Composite

Consider now the more complicated scenario illustrated in Fig. 2,

consisting of a composite–rod (of unit cross–section) in which materials

‘a’, ‘b’ and ‘c’ each have different properties (Table 1).

We wish to calculate the temperatures at nodes 2 and 3, together with

the heat flow per second through the rod. By inspection of equation 1,

we can immediately write the matrices for elements a, b, and c as:



Fig. 2: One–dimensional heat flow through an in-

sulated composite rod of unit cross–sectional area.

The finite element representation consists of three el-

ements and four nodes.

Element Length / m Thermal Conductivity / W m−1 K−1

a 0.1 100

b 0.15 15

c 0.4 80

k
a

= −

100

0.1

(
−1 1
1 −1

)

=

(
1000 −1000
−1000 1000

)

k
b

= −

15

0.15

(
−1 1
1 −1

)

=

(
100 −100
−100 100

)

k
c

= −

80

0.4

(
−1 1
1 −1

)

=

(
200 −200
−200 200

)



The assembled stiffness matrix thus becomes:

k =






1000 −1000 0 0
−1000 1000 0 0

0 0 0 0
0 0 0 0




 +






0 0 0 0
0 100 −100 0
0 −100 100 0
0 0 0 0






+






0 0 0 0
0 0 0 0
0 0 200 −200
0 0 −200 200






=






1000 −1000 0 0
−1000 1000 + 100 −100 0

0 −100 100 + 200 −200
0 0 −200 200






Q = kT so that





Q1

0
0

Q4




 =






1000 −1000 0 0
−1000 1100 −100 0

0 −100 300 −200
0 0 −200 200











400
T2

T3

100






Notice that Q2 = Q3 = 0 because there are no internal heat sources or

sinks. It follows that Q1 = −Q4 = 18750 W m−2, and T2 = 381.25 ◦C,

T3 = 193.75 ◦C.

References

Crank, J., (1975) The Mathematics of Diffusion, Oxford University
Press Chapter 8

Davies, A. J., (1980) The Finite Element Method, Clarendon Press,
Oxford

Entwistle, K. M., (1999) Basic Principles of the Finite Element Method,

The Institute of Materials, London

Huebner, K. H., (1975) The Finite Element Method for Engineers, John
Wiley and Sons, London

Segerlind, L. J., (1976) Applied Finite Element Analysis, John Wiley
and Sons, London


