Answers: Bayes' Rule

1.

$$
\begin{aligned}
\mathrm{P}(G G) & =\mathrm{P}(G G \mid M) \mathrm{P}(M)+\mathrm{P}(G G \mid D) \mathrm{P}(D) \\
& =\frac{1}{2} \mathrm{P}(M)+\frac{1}{4}[1-\mathrm{P}(M)]
\end{aligned}
$$

Therefore,

$$
\mathrm{P}(M)=4 \mathrm{P}(G G)-1=0.6
$$

2.

$$
\begin{aligned}
\mathrm{P}(L \mid Y) & =\frac{\mathrm{P}(Y \mid L) \mathrm{P}(L)}{\mathrm{P}(Y \mid L) \mathrm{P}(L)+\mathrm{P}(Y \mid C) \mathrm{P}(C)} \\
& =\frac{0.55 \times 0.52}{0.55 \times 0.52+0.85 \times 0.48} \\
& =0.41 \\
\mathrm{P}(C \mid Y) & =\frac{\mathrm{P}(Y \mid C) \mathrm{P}(C)}{\mathrm{P}(Y \mid L) \mathrm{P}(L)+\mathrm{P}(Y \mid C) \mathrm{P}(C)} \\
& =\frac{0.85 \times 0.48}{0.55 \times 0.52+0.85 \times 0.48} \\
& =0.59
\end{aligned}
$$

3.

$$
\begin{array}{ll}
\mathrm{P}(L \mid P)=26 / 232=0.11 & \mathrm{P}(R \mid P)=206 / 232=0.89 \\
\mathrm{P}(P \mid L)=26 / 48=0.54 & \mathrm{P}(P \mid R)=206 / 259=0.80
\end{array}
$$

The test $\mathrm{P}(L \mid P)<\mathrm{P}(R \mid P)$ is irrelevant. What we need is to see is what the probability of passing given that the student is left-handed is, and to compare against the corresponding probability of passing given that the student is righthanded, i.e. $\mathrm{P}(P \mid L)<\mathrm{P}(P \mid R)$. Since the latter is true, there appears to be discrimination.
4. Denote an invalid result by I and a valid result by V.

$$
\begin{aligned}
\mathrm{P}(A \mid I) & =\frac{\mathrm{P}(I \mid A) \mathrm{P}(A)}{\mathrm{P}(I \mid A) \mathrm{A}(L)+\mathrm{P}(I \mid B) \mathrm{P}(B)} \\
& =\frac{0.10 \times 0.40}{0.10 \times 0.40+0.05 \times 0.60}=\frac{4}{7}
\end{aligned}
$$

Notes

Notice that it is sometimes assumed in the answers that the fraction of observations is also the probability. Suppose we throw an unbiased coin four times, and obtain a head only once, then with this assumption the probability of obtaining a head would be a quarter. This clearly is incorrect.

