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Neural networks are parameterized non-linear models used for empirical regression and classifi-
cation modelling. Their flexibility makes them able to discover more complex relationships in
data than traditional statistical models.

Bayesian probability theory provides a unifying framework for data modeling which offers several
benefits. First, the overfitting problem can be solved by using Bayesian methods to control
model complexity. Second, probabilistic modelling handles uncertainty in a natural manner.
There is a unique prescription, marginalization, for incorporating uncertainty about param-
eters into predictions. Third, we can define more sophisticated probabilistic models which are
able to extract more information from data.

I will discuss the practical application of these methods to time series prediction of a building’s
energy consumption, and prediction of weld toughness.
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w = (0,2)

Figure 1: Output of simple neural network as a function of its input

1 Introduction to neural networks

A neural network implements a function y(x; w); the ‘output’ of the network, y, is a non-linear
function of the ‘input’ x; this function is parameterized by ‘weights’ w.

A simple network

A very simple neural network, a neuron with two inputs x = (21, %2) and two weights w =
(w1, wa), produces an output between 0 and 1 as the following function of x:

1
) = 1+ 6—(w1x1+w2x2) (1)

y(x;w

This example has two important features: (a) a linear operation, a = (w1 +waz2); followed by
(b) a non-linear function, f(a) = 1/(14+e~?). Most neural network models share these features,
having multiple linear operations alternating with non-linear functions. Figure 1 shows the
output of the neuron as a function of the input vector, for w = (0,2). The two horizontal axes
of this figure are the inputs z; and z, with the output y on the vertical axis. Notice that on
any line perpendicular to w, the output is constant; and along a line in the direction of w, the
output is a ‘sigmoid’ function.

We now introduce the important concept of the weight space, that is, the parameter space
of the network. In this case, there are two parameters w; and ws, so the weight space is two
dimensional. This weight space is shown in figure 2. For a selection of different values of the
parameter vector w, smaller inset figures show the function of x performed by the network when
w is set to those given values. Each of these smaller figures is equivalent to figure 1. Thus each
point in w space corresponds to a function of x. Notice that the gain of the sigmoid function
(the gradient of the ramp) increases as the magnitude of w increases.

Now, the central idea of the neural network method is this. Given examples of a relationship
between an input vector x, and a ‘target’ ¢, we hope to make the neural network ‘learn’ a model
of the relationship between x and ¢. A successfully ‘trained’ network will, for any given x, give
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Figure 2: Weight space.
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an output y that is close (in some sense) to the target value t. ‘Training’ the network involves
searching in the weight space of the network for a value of w that produces a function that fits
the provided training data well.

As an example, if we wished to predict the toughness of a weld with a given chemical
composition, then we might define the inputs x to be the chemical composition, e.g., percentage
weight of elements, and the output y to be the predicted toughness. The training data would be
a set {x,t} of measured weld compositions x and measured toughnesses t. The hope would be
that a trained network would extract a non-linear relationship between the toughness and the
input variables. But we would expect the toughness of a weld, as a function of composition, to
be a more complex function than any of the functions shown in the weight space of figure (2).
We therefore turn to more complex networks.

More complex neural networks

I now describe a popular form of network that can be trained to perform regression tasks.
Similar nets can be used for classification problems also and the Bayesian methods described
here produce significant benefits for them too (see MacKay (1992b) and MacKay (1995b)); but
these notes will concentrate exclusively on regression nets.

The mapping for a two layer network has the form:

Hidden layer: agl) = ij(»ll)l‘l + 9;-1); h; = f(l)(ag-l)) (2)
l

Output layer: az(-z) = E 'wl(;)hj + 92(2); Yi = f(2)(az('2)) (3)
J

where, for example, f(!)(a) = tanh(a), and f{*)(a) = a. Here [ runs over the inputs z; ...z, j
runs over the hidden units, and ¢ runs over the outputs. The ‘weights’ w and ‘biases’ § together
make up the parameter vector w. The non-linear ‘sigmoid’ function f(!) at the hidden layer gives
the neural network greater computational flexibility than a standard linear regression model.
Graphically, we can represent the neural network as a set of layers of connected neurons. One
neuron is shown in figure 3. The entire network is shown in figure 3. This is called a two layer
network because it has two layers of weights. In terms of layers of neurons, it has one input
layer, one hidden layer and one output layer.

What sorts of functions can these networks implement?

Just as for the simple network we made an exploration of its weight space, examining the
functions it could produce, let us make a small exploration of the weight space of a regression
network. In figure 4a I take a network with one input and one output and a large number H

(1) g2 (2)

of hidden units, set the biases and weights 6;1), wy’, and w,;’ to random values, and plot

ij
the resulting function y(z). I set the hidden unit biases 6" to random values from a Gaussian

J
(1)

with zero mean and standard deviation op;,s; the input to hidden weights wy

(2) (2)

with standard deviation oy,; and the bias and output weights 6; i
with standard deviation o,y;. Figure 4a shows one function for each of a sequence of values of
Obias, Oin and Oout-

The sort of functions that we obtain depend on the values of opiag, oin and ooy (Neal 1994).
As the weights and biases are made bigger we obtain more complex functions with more features
and a greater sensitivity to the input variable. Neal (1994) has also shown that in the limit as
H — oo the statistical properties of the functions generated by randomizing the weights are
independent of the number of hidden units; so, interestingly, the complexity of the functions is
independent of the number of parameters in the model. What determines the complexity of the
typical functions is the characteristic magnitude of the weights. Thus we anticipate that when
we fit these models to real data, an important way of controlling the complexity of the fitted
function will be by controlling the characteristic magnitude of the weights.

to random values

and w;;’ to random values
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Figure 3: Graphical representation of a neural network.
(a) A single neuron. (b) A two layer network with 3 inputs, four hidden units and 2 outputs.
The weights from input A to the hidden layer have been highlighted, and the weights from
the hidden layer to output B.
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Figure 4: Samples from the prior of (a) a one input network; and (b) a two input network.

(a) Varying oy, and o in a one input network: In this figure, H = 400, o4, = 0.05. For
each graph the parameter oy;,, takes a different value in the sequence: 8, 6, 4, 3, 2, 1.6,
1.2, 0.8, 0.4, 0.3, 0.2. The parameter o2 was also varied such that o /o, = 5.0. The
larger values of of;, and op;,, produce the more complex functions with more fluctuations.

(b) A typical function produced by a two input network with {H, o, op,., 0ous} =
{400, 8.0,8.0,0.05}.
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Figure 4b shows one typical function produced by a network with two inputs and one output.
This should be contrasted with the function produced by a traditional linear regression model,
which is a flat plane. Clearly neural networks can create functions with much more structure
than a linear regression!

How a regression network is traditionally trained

A network as defined in equations (2) and (3) is trained using a data set D = {x(™) t(™)} by
adjusting w so as to minimize an error function, e.g.,

2

Fp(w) = 3 303 (1 - e w) 4)

This objective function is a sum of terms, one for each input/target pair {x,¢}, measuring how
close the output y(x; w) is to the target ¢.

This minimization is based on repeated evaluation of the gradient of Fp using ‘backpropaga-
tion’ (Rumelhart, Hinton and Williams 1986). The backpropagation algorithm computes for each

2
input-output pair m the gradient of % (tgm) — yi(x(m);W)) by following the ‘forward pass’ of
equations (2-3) by a ‘backward pass’, in which information about the errors (tl(.m) — i (x(M); w))

propagates back through the network by the chain rule.
Often, regularization is included, modifying the objective function to:

M(W) =BEp + aFEw (5)

where, for example, Fy = %ZZ w?. This additional term favours small values of w and thus
encourages the model to find simpler solutions with less tendency to ‘overfit’ noise in the training
data. Regularization is also known as ‘weight decay’ because the derivative of a Ew with respect
to w is aw. This means that in a simple steepest descent optimizer the effect of the extra term
is simply to encourage weights to decay to zero.

2 Neural networks as probabilistic models

A review of probability theory is given in appendix A.

Neural network learning as inference

The neural network learning process above can be given the following probabilistic interpretation.
The error function is interpreted as defining the probability distribution of a noise model:

P(Dlw, 5, H) = le( 5 exp(=0Lp). (6)

Thus, the use of the sum-squared error Ep (4) corresponds to an assumption of Gaussian noise
on the target variables, and the parameter 3 defines a noise level o2 = 1/4.

Similarly the regularizer is interpreted in terms of a log prior probability distribution over
the parameters:

P(wla,H) = mexp(—aEW). (7)

If Ew is quadratic as defined above, then the corresponding prior distribution is a Gaussian
with variance 0%, = 1/a. Recall that a moment ago, when we were creating functions with
random networks, we set the weights to random Gaussian values. We are thus already familiar

with the implicit probabilistic model defined by the quadratic regularizer.
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Figure 5: Interpretation of objective functions as probability distributions.

The probabilistic model H specifies the functional form of the network, the likelihood (6),
and the prior (7). The objective function M (w) then corresponds to the inference of the

parameters w, given the data. By Bayes’ theorem:

P(w|D,a,8,H) = P<D|V;’(%|Z’)£(;{v)la,%) .
= %exp(—M(w)). 9)

The w found by (locally) minimizing M (w) is then interpreted as the (locally) most probable
parameter vector, wyp.

Why is it natural to interpret the error functions as log probabilities? Error functions are
usually additive. For example, Ep is a sum of squared errors. Probabilities, on the other
hand, are multiplicative: for independent events A and B, the joint probability is P(A, B) =
P(A)P(B). The logarithmic mapping maintains this correspondence.

To summarise this section: In the traditional view of learning, a single parameter vector w
evolves under the learning rule from an initial starting point w® to a final optimum w* that
minimizes M (w). In contrast, given the Bayesian interpretation of M (w) as a log probability, the
product of learning is an ensemble of plausible parameter values (figure 5). What can we now do
with this view of neural network learning? There are a number of useful consequences, relating to
the automatic control of neural network complexity, and to the quantification of the uncertainty
of a model’s predictions. These benefits will now be described, using a set of computational
short cuts based on Gaussian approximations. An alternative class of computational techniques
for implementing Bayesian neural nets are Monte Carlo methods which have been thoroughly

developed by Neal (1993).
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The Gaussian approximation

The posterior probability distribution P(w|D, «, 8, H) x exp(—M (w)), which is maximized in
the traditional approach to neural net learning, is typically a complex multimodal distribution
in weight space. Each local maximum corresponds to a different interpretation of the data.
One way to approximate this distribution, which relates in a straightforward way to traditional
algorithms that optimize M (w), is to find as many optima wy,, as possible and to make a
Gaussian approximation,

P(w|D,a,8,H) ~ le exp (—M(WMP) — %(w — W) TA (W — WMP)) , (10)
M

at each maximum. The matrix A is matched to the local curvature of M(w) by setting A =
—VVleg P(w|D,a,3,H) = VVM(w). [Here V denotes differentiation with respect to w,
which is what the backpropagation algorithm is all about. Details of how to compute A are
given elsewhere, e.g., (MacKay 1992¢, Bishop 1992).] The inverse A1 of this matrix defines the
covariance matrix of the Gaussian approximation. It defines error bars on the parameters w,
which are important to the methods that follow.

3 Complexity control

The overfitting problem

Consider a control parameter which influences the complexity of a model (for example a reg-
ularization constant «). As the control parameter is varied to increase the complexity of the
model (descending from figure 6a-c¢ and going from left to right across figure 6d), the best fit
to the training data that the model can achieve becomes increasingly good. However, the em-
pirical performance of the model, the test error, has a minimum as a function of the control
parameters. An over-complex model overfits the data and generalizes poorly. This problem may
also complicate the choice of architecture in a multilayer perceptron, the radius of the basis
functions in a radial basis function network, and the choice of the input variables themselves in
any regression problem. Finding values for model control parameters that are appropriate for
the data is therefore an important and non-trivial problem.

A central message of this paper is illustrated in figure 6e. If we give a probabilistic in-
terpretation to the model, then we can evaluate the ‘evidence’ for alternative values of the
control parameters. Over-complex models turn out to be less probable, and the quantity
P(Data|Control Parameters) can be used as an objective function for optimization of model
control parameters. The setting of o that maximizes this quantity is displayed in figure 6b.

Bayesian optimization of model control parameters has four important advantages. (1) No
‘test set’ or ‘validation set’ is involved, so all available training data can be devoted to both
model fitting and model comparison. (2) Regularization constants can be optimized on-line, i.e.,
simultaneously with the optimization of ordinary model parameters. (3) The Bayesian objective
function is not noisy, in contrast to a cross-validation measure. (4) The gradient of the evidence
with respect to the control parameters can be evaluated, making it possible to simultaneously
optimize a large number of control parameters.

Setting regularization constants « and 3

The control parameters a and 3 in equation (5) determine the complexity of the model. The
term model here refers to a triple: the network architecture; the form of the prior on the
parameters; and the form of the noise model. Different values for the hyperparameters a and /3
define different sub-models. To infer o and  given the data, we simply apply Bayes’ theorem:

P(D|a, 8, H)P (e, B|H)

P(a,B|D,H) = P(DIH)

. (11)

March 6, 1995 8 D.J.C. MacKay: Bayesian Neural Networks
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Figure 6: Optimization of model complexity. Figures a-c show a radial basis function
model interpolating a simple data set with one input variable and one output variable. As
the regularization constant is varied to increase the complexity of the model (from a to ¢),
the interpolant is able to fit the training data increasingly well, but beyond a certain point
the generalization ability (test error) of the model deteriorates. Probability theory allows
us to optimize the control parameters without needing a test set.

The data-dependent factor P(D|a, 3, #) is the normalizing constant from our previous inference
(8); we call this factor the ‘evidence’ for o and .

Assuming we have only weak prior knowledge about the noise level and the smoothness of the
interpolant, the evidence framework optimizes the constants o and § by finding the maximum
of the evidence for a and 3. If we can approximate the posterior probability distribution in
equation (9) by a single Gaussian as in equation (10), then the evidence for o and # can be
written down:

) - 1°§W% 12)
) -

logdet(A/Qﬂ') log Zw () — log Zp (8). (13)

log P(Dler, B, H

= (WNIP
The maximum of the evidence has some elegant properties which allow it to be located efficiently

by on-line re-estimation techniques. As shown in (Gull 1989, MacKay 1992a), the maximum
evidence a = ayp satisfies the following implicit equation:

March 6, 1995 9 D.J.C. MacKay: Bayesian Neural Networks



1/age = E 'w;'vlp2/7 (14)

P

where w™MF is the parameter vector which minimizes the objective function M = fEp + aEw,

and « is the ‘number of well-determined parameters’, given by
v = k—aTrace(A™!). (15)

Here k is the total number of parameters, and the matrix A~! describes the error bars on the
parameters w (equation (10)). Thus v — k when the parameters are all well-determined in
relation to their prior range, which is defined by a. Similarly, in a regression problem with a
Gaussian noise model, the maximum evidence value of 3 satisfies:

1/61\41::2ED/(N—7). (16)

Equations (14) and (16) can be used as re-estimation formulae for & and 5. The computational
overhead for these Bayesian calculations is not severe: it is only necessary to evaluate properties
of the error bar matrix, A~'. One might argue that this matrix should be evaluated anyway,
in order to compute the uncertainty in a model’s predictions. This matrix may be evaluated
explicitly (MacKay 1992c, Bishop 1992), which does not take significant time when the number
of parameters is small (a few hundred). For large problems these calculations can be performed
more efficiently using algorithms which evaluate products Av without explicitly evaluating A

(Skilling 1993, Pearlmutter 1994).

Multiple regularization constants and ‘automatic relevance determina-
tion’

For simplicity, it has so far been assumed that there is only a single class of weights, which
are modelled as coming from a single Gaussian prior with 0% = 1/a. However, in dimensional
terms, weights usually fall into three or more distinct groups, which for consistency should not
be modelled as coming from a single prior. It is therefore desirable to divide the parameters
into several classes ¢, with independent scale parameters a.. Furthermore, if we separate the
weights associated with each input into a class of their own, then each hyperparameter a. can
be viewed as describing the relevance of each input. The weights of an input with a large
value of a. have more of a tendency to decay to zero, so such an input is not as significant
in the regression. From where can we get values for all these hyperparameters? How can we
determine which are the relevant input variables for our regression? The answer is, of course, by
Bayesian inference. Just as in the previous section we optimized a single regularization constant
a by maximizing the evidence, we can derive equivalent prescriptions for optimizing multiple
regularization constants. The formulae are similar to equations (14) and (15), and are given
for example in (MacKay 1995b). For simplicity, the following discussion will assume once more
that there is only a single parameter a.

Model comparison

The evidence framework divides our inferences into distinct ‘levels of inference’, of which we
have now completed the first two.

e Level 1: Infer the parameters w for given values of a, 3:

P(D|w,a, 5, H)P B H
P(wID,a, B, H) = “Wg(g'a)ﬁ%'aﬁ ) ()

e Level 2: Infer a, 5:

P(Dla, 5, #) P, B|#H)
P(DIH)

Pla,B|D,H) = . (18)

March 6, 1995 10 D.J.C. MacKay: Bayesian Neural Networks



Figure 7: Error bars on the predictions of a trained regression network. The solid line
gives the predictions of the best fit parameters of a multilayer perceptron trained on the
data points (shown by squares). The error bars (dotted lines) are those produced by the
uncertainty of the parameters w. Notice that the error bars become larger where the data

are sparse.

e Level 3: Compare models:
P(#|D) x P(D|H)P(H). (19)

There is a pattern in these three applications of Bayes’ rule: at each of the higher levels 2 and 3,
the data-dependent factor (e.g. in level 2, P(D|a, 5,H)) is precisely the normalizing constant
(the ‘evidence’) from the preceding level of inference. This pattern of inference continues when
we compare different models A, which might use different architectures, preprocessings, regu-
larizers or noise models. Alternative models are ranked by evaluating P(D|#), the normalizing
constant of inference (18). The Gaussian approximation can be used to calculate P(D|H) and
compare alternative solutions, but unfortunately this approximation of the evidence is often not
sufficiently accurate, particularly with large networks. It is therefore wise to use other methods
for comparing different solutions in parallel with Bayesian approximations—for example ‘cross
validation’ evaluates the predictive performance of each solution on some set aside validation
data.

4 Error bars and predictions

Having progressed up the three levels of modelling, the next inference task is to make pre-
dictions with our adapted model. It is common practice simply to use the most probable values
of H,w, etc., when making predictions, but this is not optimal. Bayesian prediction of a new
datum t™ involves marginalizing over all these levels of uncertainty:

Pt D) = E/da dﬁ/d"”‘w Pt |\w, o, B, H)P(w,a, 3, H|D). (20)
H

The evaluation of the distribution P(t(N+1)|W, a, B, H) for specified model parameters w is gen-
erally straightforward, requiring a single forward pass through the network. Typically, marginal-
ization over w and H affects the predictive distribution significantly, but integration over « and
3 has a lesser effect.

March 6, 1995 11 D.J.C. MacKay: Bayesian Neural Networks



Error bars in regression

Integrating first over w for fixed a and 3, the predictive distribution is:
P(t™|D, a,5,%):/dkwP(t<N+1>|w,5,%)P(w|D, a, B, H). (21)

If a Gaussian approximation (10) is made for the posterior P(w|D, «, 8, H), with covariance
matrix A~'; if the noise model is Gaussian; and if a local linearization of the output is made as
a function of the parameters,

y(XN+1 ) W) =~ y(XN+1 ; WMP) +8- (W - WMP)a (22)

with g = dy/0w; then the predictive distribution (21) is a straightforward Gaussian integral.
This distribution has mean y(x™, wyp), and variance afla 5= gTA g + o2

Joint error bars on multiple predictions.

Often one wishes simultaneously to predict several targets {t(“) U_,, when a single network

has multiple outputs, or when we have a sequence of different inputs and wish to predict all

the corresponding targets, or both. Let the sensitivities of these outputs to the parameters be
_ oy
Bu) = ow

. Then the covariance matrix of the values {y(*)} is
Y = G'A'G, (23)

where the matrix G = [g(l)g(z) .. .g(U)]. This matrix expresses, within the Gaussian approxi-
mation, the expected variances and covariances of the predicted variables. These correlated error
ellipsoids have been demonstrated for a two output regression network in MacKay (1992c).

Integrating over models: committees

If we have multiple regression models H, then our predictive distribution is obtained by summing
together the predictive distribution of each model, weighted by its posterior probability. If a
single prediction is required and the loss function is quadratic, the optimal prediction is a
weighted mean of the models’ predictions y(x™"; wyp, H). The weighting coefficients are the
posterior probabilities, which are obtained from the evidences P(D|H). If we cannot evaluate
these accurately then alternative pragmatic prescriptions for the weighting coefficients exist

(Breiman 1992) (see appendix B for further details).

5 Prediction competition

The American Society of Heating, Refrigeration and Air Conditioning Engineers organised a
prediction competition in 1993. The competition had two parts, both of which involved creating
an empirical model based on training data (as distinct from a physical model), and making
predictions for a test set. Part A, which I describe here, involved three target variables, and
the test set came from a different time period from the training set, so that extrapolation was
involved.

The task

The training set (figure 8) consisted of hourly measurements from September 1 1989 to
December 31 1989 of four input variables (temperature, humidity, solar flux and wind), and
three target variables (electricity, cooling water and heating water) — 2926 data points for each
target. The testing set consisted of the input variables for the next 54 days — 1282 points.
The organizers requested predictions for the test set; no error bars on these predictions were
requested. The performance measures for predictions were the Coefficient of Variation (‘CV’, a
sum squared error measure normalized by the data mean), and the mean bias error (‘MBE’, the
average residual normalized by the data mean).

March 6, 1995 12 D.J.C. MacKay: Bayesian Neural Networks
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a) The entire training set. b) Detail.
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Figure 9: A typical network used for problem A.

The filters produced moving averages of the four environmental inputs on three time-scales:
2.5, 24 and 72 hours. The temperature variable was also given a 144 hour filter. Time was
represented using the cos of the year angle, a holiday indicator, and the cos and sin of: the
week angle, the day angle, and twice the day angle. All hidden and output units also had

a connection to a bias unit (not shown).

Method

I trained a large number of neural nets using the ARD model, for each of the prediction problems.
The data seemed to include some substantial glitches. Because I had not yet developed an
automatic Bayesian noise model that anticipates outliers (though this could be done (Box and
Tiao 1973)), I omitted by hand those data points which gave large residuals relative to the first
models that were trained. These omitted periods are indicated on some of the graphs in these
notes. 25% of the data was selected at random as training data, the remainder being left out
(a) to speed the optimizations, and (b) for use as a validation set. All the networks had a single
hidden layer of tanh units, and a single linear output (figure 9). It was found that models with
between 4 and 8 hidden units were appropriate for these problems.

A large number of inputs were included: different temporal preprocessings of the environmen-
tal inputs, and different representations of time and holidays. All these inputs were controlled
by the ARD model. ARD proved a moderately useful guide for decisions concerning prepro-
cessing of the data, in particular, how much time history to include. Moving averages of the
environmental variables were created using filters with a variety of exponential time constants.
This was thought to be a more appropriate representation than time delays, because (a) filters
suppress noise in the input variables, allowing one to use fewer filtered inputs with long time
constant; (b) with exponentially filtered inputs it is easy to create (what I believe to be) a
natural model, giving equal status to filters having timescales 1, 2, 4, 8, 16, etc..

The on-line optimization of regularization constants was very successful. For problem A,
28 such control constants were simultaneously optimized in every model. Most models did not
show ‘overtraining’ as the optimization proceeded, so ‘early stopping’ was not generally used.
The numerical evaluation of the ‘evidence’ for the models proved problematic, so validation
errors were used to rank the models for prediction. For each task, a committee of models was
assembled, and their predictions were averaged together; this procedure was intended to mimic
the Bayesian predictions P(t|D) = [ P(t|D,H)P(H|D) dH. The size of the committee was
chosen so as to minimize the validation error of the mean predictions. This method of selecting
committee size has also been described under the name ‘stacked generalization’ (Breiman 1992).
In all cases, a committee was found that performed significantly better on the validation set
than any individual model.
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Figure 10: Target A1 — Electricity

Results

The three target variables are displayed in their entirity, along with my models’ final predictions
and residuals, in figures 10-12.

There are local trends in the testing data which the models were unable to predict. Such
trends were presumably ‘overfitted’ in the training set. Clearly a model incorporating local
correlations among residuals is called for. Such a model would not perform much better by the
competition criteria, but its on-line predictive performance would be greatly enhanced.

In the competition rules, it was suggested that scatter plots of the model predictions versus
temperature should be made. The scatter plot for problem A3 is particularly interesting. Target
A3 showed a strong correlation with temperature in the training set (dots in figures 13b). When
I examined my models’ predictions for the testing set, I was surprised to find that, for target A3,
a significantly offset correlation was predicted (‘+’s in figure 13a). This change in correlation
turned out to be correct (‘+’s in figure 13b). This indicates that these non-linear models
controlled with Bayesian methods discovered non-trivial underlying structure in the data. Most
other entrants’ predictions for target A3 showed a large bias; presumably none of their models
extracted the same structure from the data.

In the models used for problem A3, I have examined the values of the parameters {a., 7.},
which give a qualitative indication of the inferred ‘relevance’ of the inputs. For prediction of the
hot water consumption, the time of year and the current temperature were the most relevant
variables. Also highly relevant were the holiday indicator, the time of day, the current solar and
wind speed, and the moving average of the temperature over the last 144 hours. The current
humidity was not relevant, but the moving average of the humidity over 72 hours was. The solar
was relevant on a timescale of 24 hours. None of the 2.5 hour filtered inputs seemed especially
relevant.

After the competition, it was revealed that the building in this study was a large university
engineering center in Texas. Some of the glitches in the data were caused by the bursting of
cold water pipes during a frost — a rare event apparently not anticipated by Texan architects!
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Figure 11: Target A2 — Cooling water
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Problem A1 | RMS Mean CV  MBE | RMSgqz Meanggy; RCV
ARD 64.7 50.3 10.3 8.1 54.1 42.2 11.1
ARD off 71.2 56.2 11.4 9.0 59.3 47.3 12.2
Entrant 6 11.8 10.5
Median 16.9 -104
Problem A2 | RMS Mean CV  MBE | RMSgq, Meanggy; RCV
ARD 642 -.314 13.0 -64 A15 -.296 11.2
ARD off .668 -.367 13.5 -74 451 -.349 12.2
Entrant 6 13.0 -5.9
Median 14.8 -7.6
Problem A3 | RMS Mean CV  MBE | RMSgg Meanggy; RCV
ARD 532 -.204 15.2 -58 384 -.167 9.15
ARD off 495 -121 14.2 -35 339 -.094 8.08
Entrant 6 30.6 -27.3
Median 31.0 -27.0
Key:

My models:

ARD The predictions entered in the competition using the ARD model.

ARD off Predictions obtained wusing derived models with the standard

regularizer.

Other entries:

Entrant 6 The entry which came 2nd by the competition’s average CV score.

Median Median (by magnitude) of scores of all entries in competition.
Raw Performance measures: Robust Performance measures:
RMS  Root mean square residual. RMSg0s  Root mean square of the
Mean Mean residual. smallest 90% of the residuals.
CV Coefficient of variation (per- Meanggy;,  Mean of those residuals.
centage). The competition RCV RMSgq4/( 90% data range).

performance measure.
MBE Mean Bias Error (percentage).

Normalizing constants: Problem | Mean of test data 90% data range
Al 624.77 486.79
A2 4.933 3.7
A3 3.495 4.2

Table 1: Performances of different methods on test sets
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Figure 13: Predictions for target A3 (HW) versus temperature

(a) Model predictions. This graph shows that my model predicted a substantially different
correlation between target A3 and temperature (4) from that shown in the training set (-).
(b) Data. This predicted offset was correct.

Discussion

The ARD prior was a success because it made it possible to include a large number of inputs
without fear of overfitting. Further work could be well spent on improving the noise model,
which assumes the residuals are Gaussian and uncorrelated from frame to frame. A better
predictive model for the residuals shown in figures 10-12 might represent the data as the sum
of the neural net prediction and an unpredictable, but auto-correlated, additional disturbance.
Also, a robust Bayesian noise model is needed which captures the concept of outliers.

It should be emphasised that this was not a fully automated modelling method. Human
interaction was essential, and common sense was needed to check whether the assumptions were
appropriate and intervene when not (see appendices B and C). Having said this, the Bayesian
framework allowed for far more automation than is possible in a traditional neural network
approach. Specifically, because appropriate priors (regularizers / weight decay) are used, there
is no need to worry about ‘early stopping’. And the problem of variable selection can be solved
by using the ARD prior.

In conclusion, the winning entry in this competition was created using the following data
modelling philosophy: use huge flexible models, including all possibilities that you can imagine
might be appropriate; control the flexibility of these models using sophisticated priors; and use
Bayes as a helmsman to guide the search in this model space.

6 Prediction of weld toughness

The toughness of a steel depends on many variables, and that of a weld on many more,
because of the complexity of the welding process. The Charpy test can be used to characterize
the toughness of a weld. We (Bhadeshia, MacKay and Svensson (1995)) have developed an
empirical non-linear model of the Charpy toughness as a function of the composition (percentage
by weight of C, Si, Mn, P, S, Al, N, O), the yield strength, the temperature at which the
weld was formed, and the percentages of primary microstructure, secondary microstructure,
allotriomorphic ferrite, acicular ferrite and Widmanstatten ferrite.

The same probabilistic model (‘ARD’) was used as in the prediction competition work. 181
data points were divided into 100 training examples and 81 test examples. Figure 14 shows, for
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Figure 14: Performance on weld data. Scatter plot of predicted versus actual toughness.

(a) training set. (b) test set.

a single selected model having four hidden units,® a scatter plot of the predicted versus actual
toughness on the training data (left) and on the test data (right). The error bars are plus or
minus one standard deviation predictive error bars. Although there are a few test cases where
the model’s prediction is badly wrong, in most test cases the predictions are within 15% of the
actual value, and the errors are compatible with the predictive error bars.

For further discussion of interesting non-linear effects discovered by this model, see Bhadeshia
et al. (1995).

In this demonstration, we have cheated slightly in that we used the error on the test set to
identify this model as the best model, and we then displayed its performance on the same test
data. Ideally we would have had more data and ranked the models on a wvalidation set before
finally evaluating the performance on a separate test set (see appendix B).

Appendices
A Probability theory

Bayesian probability theory provides a unifying framework for data modelling. A Bayesian data-
modeller’s aim is to develop probabilistic models that are well-matched to the data, and make
optimal predictions using those models. The Bayesian framework has several advantages.

Probability theory forces us to make explicit all our modelling assumptions, whereupon our
inferences are mechanistic. Once a model space has been defined, then, whatever question we
wish to pose, the rules of probability theory give a unique answer which consistently takes into
account all the given information. This is in contrast to orthodox (also known as ‘frequentist’ or
‘sampling theoretical’) statistics, in which one must invent ‘estimators’ of quantities of interest
and then choose between those estimators using some criterion measuring their sampling prop-
erties; there is no clear principle for deciding which criterion to use to measure the performance
of an estimator; nor, for most criteria, is there any systematic procedure for the construction of
optimal estimators.

Bayesian inference satisfies the likelihood principle (Berger 1985): our inferences depend only
on the probabilities assigned to the data that were received, not on properties of other data sets

1 One would expect better predictions to be obtained by combining the predictions of several good models.
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which might have occurred but did not.

Probabilistic modelling handles uncertainty in a natural manner. There is a unique prescrip-
tion (marginalization) for incorporating uncertainty about parameters into our predictions of
other variables.

Finally, Bayesian model comparison embodies Occam’s razor, the principle that states a
preference for simple models. This point is expanded on in MacKay (1992a) and other references.

Joint, conditional and marginal probabilities

The language of coherent inference is probability theory (Cox 1946). All coherent beliefs and
predictions can be mapped onto probabilities. 1 will use the following notation for conditional
probabilities: P(A|B,#) is pronounced ‘the probability of A, given B and H’. The statements
B and H list the conditional assumptions on which this measure of plausibility is based. For
example, imagine that Joe has a test for a nasty disease; if A is the proposition “the test result
is positive”, and B is “Joe has the disease”, then the quantity P(A|B, ) is a number between 0
and 1 which expresses how likely we think the test would be to give the right answer, assuming
that Joe did have the disease, and given the overall assumptions A about the reliability of the
test.

There are two rules of probability. The product rule relates the joint probability of A and
B, P(A, B|H) to the conditional probability above:

P(A, B|H) = P(A|B,H)P(B|H). (24)

Thus the probability that Joe has the disease (B) and the test is positive (A) is the product of
the probability that Joe has the disease, and the probability that the test detects the disease,
given that he has got it.

The sum rule relates the marginal probability distribution of A, P(A|#), to the joint and
conditional distributions:

P(AIH) =Y P(A,BI#) =Y P(A|B,H)P(BIH).

Here we sum over (or ‘marginalize over’) the alternative values of B. For example, if Joe either
has the disease (B) or does not (B), then the sum rule states P(A|H) = P(A, B|H)+ P(A, B|H),
i.e., the probability of obtaining a positive result is the sum of the probabilities of the two
alternative explanations: the probability that the result is positive and Joe has the disease, plus
the probability that the result is positive and Joe does not in fact have the disease. If B is a
continuous variable then the sum is replaced by an integral, and the probability P(B|H) is a
probability density.

Having specified the joint probability of all variables as in equation (24), we can then use
the rules of probability to evaluate how our beliefs and predictions should change when we gain
new information, i.e., as we change the conditioning statements to the right of the “” symbol.
For example, given that Joe’s test result is positive, we might wish to know how plausible it is
that Joe has the disease; this is measured by the probability P(B|A,#), which can be obtained
by Bayes’ theorem,

P(A|B,H)P(B|H)

P(A|H)

Here, our overall model of the situation, #, is a conditioning statement on the right hand side of
all the probabilities. In this sense, Bayesian inferences are ‘subjective’, in that it is not possible
to reason about data without making assumptions. At the same time, Bayesian inferences are
objective, in that anyone who shares the same assumptions H will draw identical inferences;
there is only one answer to a well-posed problem. Bayesian methods thus force us to make
all tacit assumptions explicit, and then provide rules for reasoning consistently given those
assumptions. Note that the conditioning notation does not imply causation. P(B|A) does not
mean ‘the probability that Joe’s illness is caused by his positive test result’. Rather, it measures
the plausibility of proposition B, assuming that the information in proposition A is true.

P(B|A,H) =
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Posterior, likelihood and prior

When comparing alternative hypotheses w in the light of data D, Bayes’ theorem reads:

D\w,H)P(w|H)
P(D|H)

pw|D,#) = £ . (25)

Each of these terms is given a name:

P(w|D,H) Posterior probability of w.
P(D|w,H) Likelihood of w.

P(w|H) Prior probability of w.
P(D|H) Evidence for H.

Note that whereas colloquially the terms likelihood and probability are used interchangeably,
here the word likelihood has a distinct meaning.

The evidence is an unimportant normalizing constant in equation (25) but it assumes an
important role if we compare alternative models:

P(H,|D) = %j}f;(%)
P(H2|D) = %jf;(%z)

B Summary of neural network modelling suggestions

1. When data modelling is in the research stages, always divide the available data into three
sets—a training set, a validation set, and a testing set—unless data are really too scarce.

The training set is used to optimize the parameters of each model. The validation set is
used to compare alternative models and to compare alternative modelling strategies. It is
a surrogate for the testing set which is set aside and reserved as the final once-only ‘real
world test’.

In a non-Bayesian approach, the validation set may be used to set hyperparameters such
as weight decay rates. In the Bayesian approach, the training set alone can be used both
to infer parameters and hyperparameters.

The training, validation and test sets should be designed in a way that reflects the real
world problem to be solved. This might in some cases mean randomly selecting inputs to
put them in each set; or in other scenarios one might wish to systematically arrange that
the training set, say, contains a uniform sampling of the input space. Or one might know
that in the real world one would have to extrapolate, in which case it would be appropriate
to construct a training set having a different input distribution from the other sets.

Given scarce data it might be worth systematically repeating an experiment, say, ten
times, with ten different divisions of the data into training and validation sets.

2. Eyeball the data to check for glitches and outliers.

3. Choose the measure of validation and test performance carefully. It is popular to use the
test error (sum squared error) as the default performance measure, but in fact this may
be a misleading criterion (MacKay and Oldfield 1995). In many applications there will be
an opportunity not to simply make a scalar prediction, but rather to make a prediction
with error bars, or maybe an even more complicated predictive distribution. It is then
reasonable to compare models in terms of their predictive performance as measured by
the log predictive probability of the test data or validation data. Under the log predictive
error, as contrasted with the test error, the penalty for making a wild prediction is much
less if that wild prediction is accompanied by appropriately large error bars. The log
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predictive error (LPE), assuming that for each example m the model gives a prediction
2
Normal(y(™), U@(/m) ) is:

LPE = Y —log P(t™|D, )

m

1 m m 2 m 2 m
5[5 (1 = ™) roir” + og(Vma)

Also, going back to scalar predictions: consider using more robust error measures than
the mean-square error. After all, is it usually the case that if an error of size 2.0 costs 3
pounds more than an error of size 1.0, then an error of size 3.0 costs 5 pounds more than
the size 2.0 error, and an error of size 4.0 costs 7 pounds more than the size 3.0 error?
Often a more robust measure such as the mean absolute deviation, or the mean squared
error of the smallest 90% of the residuals, may be a more realistic loss function.

4. Optimize the model using a high quality optimizer. Don’t use a plain steepest descent
optimizer. Use conjugate gradients or other methods that keep track of higher order
information about the optimized function (see Press, Flannery, Teukolsky and Vetterling
(1988) and Jervis and Fitzgerald (1993), but don’t use the code from Press et al. (1988),

because it is suboptimal in many ways).

5. Use regularizers, also known as priors, also known as weight decay. If possible, control
the regularization constants either using your prior knowledge of the problem, or using
Bayesian hyperparameter optimization methods. If you have other ways of controlling
the hyperparameters, try those too; and compare them with the Bayesian approach on
appropriate validation or test data.

6. Run the optimizations multiple times using different seeds, different initial conditions,
different optimization schedules, and examine the validation scores to check that you
have got the optimizers running with the knobs set at their best values. Bear in mind
that too much regularization early on in the learning may prevent a network from learning
interesting structure. A possible rule of thumb is to hold the regularization at a weak value
for a considerable fraction of the optimization, and only then allow the hyperparameter
control to kick in.

7. During optimization of a model’s parameters, keep an eye on the validation performance. If
the performance reaches an optimum and then becomes significantly worse, then something
is probably wrong with the model. A traditional response to the symptom of ‘over-training’
is ‘early stopping’—stopping the training at the point where the validation performance
is best. This seems to me to be a terrible response to a clear model sickness. When a
child learns, it is not thought important to whisk them away from the teacher before they
‘over-learn’! Over-learning is often an indication that a probabilistic assumption in the
noise model or the regularizer is inappropriate.

The following diagnostic procedures may help track down the problem, and should be
followed even if there is not an overtraining problem.

(a) Look at the residuals, i.e., the differences between the target and the model’s output.
Are there some huge outliers? You may now be able to detect glitches in the data that
were not obvious at the start. (If so, and if they are caused by severely non-Gaussian
noise, then maybe they should be left out of the training data.)

(b) Look at the weights. Are there some parameters that are far bigger than others?
Are there some parameters that are all going to zero? Are some hidden units in the
network only exploring their linear regime?

(c) Look at the weights in each regularization class. Do they all have similar magnitudes
to each other, or are some weights much bigger than others? If the latter, then this
may be a hint that they should not be in the same class as each other.
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8.

9.

10.

C

Investigate alternative representations of the problem, e.g., alternative input and output
representations. If you think you have a good idea for a preprocessing of the inputs, try
it out; but also try feeding a net the raw unprocessed inputs, so it can figure out its own
preprocessing (maybe giving such a net an extra hidden layer). Consider constructing a
net such that the human solution is a special case of the mappings the net can perform,
and initialize the net to that special case. Then when the net is optimized, things can only
get better. The worst possible outcome is that you end up with a net that is as good as
the preexisting human solution!

When making predictions:

(a) use parameter error bars to compute predictive error bars.

(b) don’t just use one best model. Use multiple good models and combine their pre-
dictions. This is called ‘forming a committee’. The size of the committee can be
controlled for example by looking at the validation error of the committee’s predic-
tions, by whatever error function is to be used at the end of the day. Typically there
will be an optimum committee of size L > 1.

The following formula (derived by computing the mean and variance of a mixture
of Gaussian distributions) gives the error bars for the predictions of a committee

(1)

consisting of L equally weighted members whose predictions are y!) + oy’

1
. . . _ _ - (l)
Committee prediction y = 7 Ek Y

1 1
Variance o2 = T Z 0-1(/’)2 + T Z(y(l) _ g)Z.
l l

Thus the variance of the committee’s predictive distribution is the variance of the
means plus the mean of the variances.

Try to ensure that prior knowledge of the problem is hard wired into the structure of the
network.

If the function is expected to have a certain continuity property as a function of the input
variables, then use an input representation that respects this continuity. For example,
if an input variable is an angle, do not represent it by a number between -180 and 180;
rather, since 180 and -180 are in fact the same as each other, use a representation that
makes this explicit. For example, represent the angle as its cosine and sine.

If an output variable is known to be between 0 and 1, use an output function f that
respects these bounds.

Summary of assumptions

It is important to be aware of the assumptions implicit in the above modelling procedure. If any
of these assumptions are expected to give trouble then (with additional effort) new probabilistic
models can be designed which implement more appropriate or more general assumptions. The
above approach implicitly assumes:

1.
2.
3.
4.

That the target is a noisy version of the true output.
That the noise is Gaussian with a variance that is the same for all examples.
That the underlying mapping from input to output is the same for all time.

That the input variables are noise-free.?

2This assumption could be removed if we made a more sophisticated output noise model.
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5. That the true function has the character of typical samples from the distribution illustrated
in figure 4. This means in general that:

(a) The true function is a continuous function of the inputs.

(b) The typical values of the input variables should be centred on zero. Rescaling of
input variables so that they are in the interval [-0.5,0.5], is often a good idea, though
not obligatory.

6. That there are no missing inputs. If there are in fact missing inputs then caution is
needed. It is not valid to set missing inputs to zero. Probabilistic models that can handle
missing inputs (MacKay 1995a) are hard work to implement if they are based on neural
networks. An idea worth looking into might be to represent each input by two numbers
defining a confidence interval; missing inputs would have the broades interval. An alter-
native approach is to turn to more tractable graphical probabilistic models (Spiegelhalter
and Lauritzen 1990), which can handle missing inputs with no problems, but don’t have
the same non-linear capabilities as neural networks. The BUGS program developed by
Spiegelhalter et al is an excellent environment for implementing graphical models.
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