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MODELLING OF MATERIALS (2)

Answer six parts from Section A (i.e. Question 1), which carries one–third
of the credit for this paper.

Two questions should be answered from Section B; these two questions carry
one–third of the credit for this paper.

One question should be answered from Section C; this carries one–third of
the credit for this paper.

Write on one side of the paper only.

The answer to each question must be tied up separately, with its own
cover-sheet. All the parts of Question 1 should be tied together.

Write the relevant question number in the square labelled ‘Section’ on each
cover–sheet. Also, on each cover–sheet, list the numbers of all questions at-
tempted from this paper.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you
may do so by the Invigilator
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SECTION A

1. (a) In atomistic modelling it is useful to expand the potential energy
of the material into pairwise and higher terms. Write an expression
for this expansion. Describe the circumstances in which it would be
appropriate to use the Axilrod–Teller potential.

(b) Describe five experimental methods used in the determination of
equilibrium phase diagrams.

(c) Describe what you would need to include in the documentation of
a materials algorithm expressed as a computer program, in order to
make it easy for others to use and modify.

(d) Write a FORTRAN program which reads 30 rows of numerical data
and provides a sum of all numbers in those data which are greater
than 20.0 but less than 40.0. The program should also write the
fraction of numbers, of the total set of numbers, that satisfy this
criterion.

(e) What factors contribute to the heat capacity of a metal?

(f) Describe the Kirkendall experiment and how this proves that diffu-
sion in the solid state occurs by a vacancy mechanism.

(g) Why does the growth rate of a particle undergoing isothermal, one–
dimensional, diffusion–controlled growth decrease as the particle gets
larger?

(h) Describe how hyperbolic tangents can be used to construct nonlin-
ear models typical in neural network analysis. State one way in
which overfitting to experimental data is avoided in neural network
analysis.

(i) Sketch a coarse scale representation of a diblock copolymer. What
are the two main parameters of a mesoscale model of a melt of such
a block copolymer. What type of structure is expected when a sym-
metric diblock copolymer melt phase separates? Write down the
general expression of the mean squared end–to–end distance scaling
for a polymer chain. How might the exponent of the phase separated
diblock copolymer end-to-end distance relate to that of a homopoly-
mer melt?

(j) What are the potential benefits of a mathematical model of an in-
dustrial process? Give two examples to illustrate your answer.
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SECTION B

2. Explain, in the context of binary solutions, what is meant by the term
chemical potential. Hence justify the fact that the common tangent con-
struction, on a free energy versus concentration plot, gives the equilibrium
compositions of the phases.

Show how the diffusion coefficient can be written in terms of the chem-
ical potential gradient rather than the concentration gradient. In what
circumstances might the diffusion flux oppose the concentration gradient?

3. During the design of a mesoscale model of a polymer chain, the level
of coarse graining is chosen such that the polymer is represented by a
Gaussian chain. Explain in words the meaning of a Gaussian chain and
of the orientational correlations of bonds along the chain.

Name two specific choices of mesoscale model you would consider for
simulating solutions of such Gaussian chain polymers, and state three
key features of each model. Give a general expression for the upper and
lower bound of the time step which can be used in a Brownian Dynamics
simulation of such a model, defining the terms. Given the fact that
the relaxation time for bond rotations is 10−11 s, the segment length is
l = 1 nm, and the diffusivity per segment is D = 10−7 cm2 s−1, provide
estimates for these upper and lower bounds.

4. Explain the concept of an extended volume in the context of the Avrami
theory for overall transformation kinetics. Stating any assumptions, de-
duce the relationship between a change in the extended volume of the
precipitate phase and the corresponding change in its real volume.

A phase α precipitates from γ in a reaction which involves nucleation at
randomly located sites within γ. Assuming that the growth rate of the α
is constant and isotropic, derive an expression which relates the volume
fraction of α as a function of transformation time and the nucleation and
growth rates.

5. Briefly outline the basis of the shear–lag model for load transfer in short–
fibre composites. Use this approach to derive an expression for the critical
fibre aspect ratio representing the shortest fibre length which can be
fractured by imposing a large strain on the material.

In a short–fibre composite loaded parallel to the fibre axis, the contribu-
tion to the fracture energy from interfacial debonding is given by

Gcd = fsGcl

where f is the fibre volume fraction, s is the fibre aspect ratio (length
divided by diameter) and Gcl is the fracture energy of the fibre/matrix
interface. Explain the limits within which this expression is valid.



         

Page 4 of 5

SECTION C

6. (i) Describe how molecular solids are bonded. The Lennard–Jones poten-
tial is frequently used to model solid inert gases. Provide a justification
for the functional form of each term in the potential. What is the range
of validity of the potential and explain the principal computational ad-
vantages of its use.

The total energy per atom of a Lennard–Jones solid is given by

u(r) = 2ε

[∑

i
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σ

pijr

)12

−
∑

j
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where ε and σ are constants, pijr is the distance between atoms i and j
and r is the nearest neighbour separation.

Face–centred cubic (fcc) structure:
∑
j p
−12
ij = 12.13 and

∑
j p
−6
ij = 14.45

Body–centred cubic (bcc) structure:
∑
j p
−12
ij = 9.11 and

∑
j p
−6
ij = 12.25

Show that at equilibrium, the cohesive energy of the fcc structure is 4%
lower than that of the bcc structure.

(ii) Outline an atomistic method suitable for simulating the phase tran-
sition from a bcc to an fcc structure in the Lennard–Jones system as
described in part (i). Your answer should identify the relevant thermody-
namic state functions, give a brief summary of the simulation algorithm,
contrast the method with another equivalent technique, and indicate how
the simulation conditions differ from the calculation in part (i).
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7. Explain what is meant by the terms displacive and reconstructive phase
transformations, commenting particularly on the shape, chemical compo-
sition, and strains associated with each mechanism.

Describe the evolution of microstructure in the fusion zone of a steel
weld as it cools from the austenite phase field, commenting specifically on
the formation of allotriomorphic ferrite, Widmanstätten ferrite, acicular
ferrite and martensite.

(i) Which of these transformations is promoted by increasing the cool-
ing rate?

(ii) Derive an expression for the energy input per unit length (Q) during
arc welding, in terms of the welding current, voltage, arc transfer
efficiency and welding speed. How does the cooling rate depend on
Q and on the original temperature T0 of the substrate being welded?

(iii) Why does the growth of allotriomorphic ferrite and Widmanstätten
ferrite become sensitive to the carbon concentration as the concen-
tration is reduced?


