next up previous
Next: About this document ... Up: Fatigue Crack Growth Rate Previous: Acknowledgements


P. C. Paris, M. P. Gomez, and W. E. Anderson.
A rational analytic theory of fatigue life.
The Trend in Engineering, 13:9-14, 1961.

P. C. Paris and F. Erdogan.
A critical analysis of crack propagation laws.
J. Basic Eng.(Trans. ASME), 85:528-534, 1963.

P. C. Paris.
The fracture mechanics approach to fatigue.
Proc. 10th Sagamore Conf, pages 107-132, 1965.

R. O. Ritchie.
Near threshold fatigue-crack propagation in steels.
International Metals Reviews, 4:205-230, 1979.

L. N. McCartney and P. M. Cooper.
A new method of analysing fatigue crack propagation data.
Engineering Fracture Mechanics, 9:273-290, 1974.

K. H. Schwalbe.
Comparison of several fatigue crack propagation laws with experimental results.
Engineering Fracture Mechanics, 6:325-341, 1974.

W. Elber.
The significance of fatigue crack closure.
ASTM STP, 486:230-242, 1971.

T. V. Duggan.
A theory for fatigue crack propagation.
Engineering Fracture Mechanics, 9:735-747, 1977.

D. V. Ramsamooj and T. A. Shugar.
Model prediction of fatigue crack propagation in metal alloys in laboratory air.
International Journal of Fatigue, 23:S287-S300, 2001.

S. Shademan, A. B. O. Soboyejo, J. F. Knott, and W. O. Soboyejo.
Physically based model for the prediction of long fatigue crack growth in Ti-6Al-4V.
Materials Science and Engineering A, 315:1-10, 2001.

H. K. D. H. Bhadeshia.
Neural networks in materials science.
ISIJ International, 39:966-979, 1999.

M. D. Mathew, D. W. Kim, and W. S. Ryu.
A neural network model to predict low cycle fatigue life of nitrogen-alloyed 316l stainless steel.
Materials Science and Engineering A, 474:247-253, 2008.

D. J. C. MacKay.
Practical bayesian framework of backpropagation networks.
Neural Computation, 4:448-472, 1992.

D. J. C. MacKay.
Bayesian interpolation.
Neural Computation, 4:415-447, 1992.

D. J. C. MacKay.
Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

H. K. D. H. Bhadeshia.
Neural networks and information in materials science.
Statistical Analysis and Data Mining, 1:296-305, 2009.

T. Goswami.
Prediction of low cycle fatigue lives of low alloy steels.
ISIJ International, 36:354-360, 1996.

S. B. Singh and H. K. D. H. Bhadeshia.
Estimation of bainite plate-thickness in low-alloy steels.
Materials Science and Engineering A, A245:72-79, 1998.

J. M. Vitek, Y. S. Iskander, and E. M. Oblow.
Improved ferrite number prediction in stainless steel arc welds using artificial neural networks.
Welding Journal, Research Supplement, 79:33s-50s, 2000.

J. Tenner, D. A. Linken, P. F. Morris, and T. J. Bailey.
Prediction of mechanical properties in steel heat treatment process using neural networks.
Ironmaking and Steelmaking, 28:15-22, 2001.

D. Dunne, H. Tsuei, and Z. Sterjovski.
Artificial neural networks for modelling of the impact toughness of steel.
ISIJ International, 44:1599-1607, 2004.

Z. Guo and W. Sha.
Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network.
Computational Materials Science, 29:12-28, 2004.

M. Mukherjee, S. B. Singh, and O. N. Mohanty.
Neural network analysis of strain induced transformation behaviour of retained austenite in TRIP-aided steels.
Materials Science and Engineering A, 434A:237-245, 2006.

H. K. D. H. Bhadeshia, R. C. Dimitriu, S. Forsik, J. H. Pak, and J. H. Ryu.
On the performance of neural networks in materials science.
Materials Science and Technology, 25:504-510, 2009.

M. Jono, Y. Iono, A. Ohta, S. Kawai, H. Kobayashi, K. Komai, T. Sakai, K. Hirakawa, and K. Mori.
Data book on fatigue crack growth rates of metalic materials, vol. 1 and vol. 2.
Technical report, The Society of Materials Science, Japan, Kyoto, Japan, 1983.

J.-H. Pak, J.-H. Jang, H. K. D. H. Bhadeshia, and L. Karlsson.
Optimisation of neural network for Charpy toughness of steel welds.
Materials and Manufacturing Processes, 24:16-21, 2009.

J. H. Ryu and H. K. D. H. Bhadeshia.
Contribution of microalloying to the strength of hot-rolled steels.
Materials and Manufacturing Processes, 24:1-7, 2009.

M. S. Joo, J. H. Ryu, and H. K. D. H. Bhadeshia.
Domains of steels with identical properties.
Materials and Manufacturing Processes, 24:53-58, 2009.

D. J. C. MacKay.
Bayesian non-linear modelling for the energy prediction competition.
ASHRAE Transactions, 100:1053-1062, 1994.

J. R. Griffiths and C. E. Richards.
Fatigue testing.
Mater. Sci. Eng R, 11:305-315, 1973.

D. Broek and J. Schijve.
Fatigue crack growth; effect of sheet thickness.
Aircraft Engineering, 38:31-33, 1966.

A. Otsuka, Y. Fujii, and K. Maeda.
A new testing method to obtain mode 2 fatigue crack growth characteristics of hard materials.
Fatigue Fract Engng Mater Struct, 27:203-212, 2004.

M. A. Hicks and J. E. King.
Temperature effects on fatigue tresholds and structure sensitive crack growth in a nickel-base superalloy.
Int. J Fatigue, 5:67-74, 1983.

R. L. Tobler.
Low temperature effects on the fracture behaviour of a nickel base superalloy.
Cryogenics, 1:669-674, 1976.

L. A. James and W. J. Mills.
Effect of heat treatment and heat to heat variations in the fatigue crack growth response of alloy 718.
Engineering Fracture Mechanics, 22(5):797-817, 1985.

J. Telesman and L. J. Ghosn.
The unusual near-treshold fatigue crack growth behaviour of a single crystal superalloy and the resolved shear stress as the crack driving force.
Engineering Fracture Mechanics, 34(5/6):1183-1196, 1989.

J. C. Healy, L. Grabowski, and C. J. Beevers.
Short fatigue crack growth in a nickel base superalloy at room and elevated temperature.
Int J. Fatigue, 2:1183-1196, 1991.

S. S. Tschegg.
Fatigue crack growth and thresholds at ultrasonic frequencies.
Int J. Fatigue, 28:1456-1464, 2006.

T. L. MacKay.
Fatigue crack propagation rate at low $ {\Delta}$K of two aluminium sheet alloys, 2024-T3 and 7075-T6.
Engineering Fracture Mechanics, 11:753-761, 1979.

R. Dimitriu and H. K. D. H. Bhadeshia.
Hot-strength of creep-resistant ferritic steels and relationship to creep-rupture data.
Materials Science and Technology, 23:1127-1131, 2007.

S. Chatterjee and H. K. D. H. Bhadeshia.
Stretch-flangeability of strong multiphase steels.
Materials Science and Technology, 23:606-609, 2007.


Table 1: Chemical composition range (wt%) of the steels studied. The lower half of the table shows the variables actually included in the analysis.
Element Range      Element Range
Carbon 0.1-0.8   Copper 0-0.2
Chromium 0-5   Manganese 0-2
Molybdenum 0-2   Nickel 0-2
Silicon 0-2      
Variable Range      Variable Range
Elongation / % 0.2 -61.8   0.2% Proof stress / MPa 122-1735
Tensile strength / MPa 270-2206   Specimen length / mm 13-260
Specimen thickness / mm 1.2-134   Pre-crack length / mm 1-52
Stress ratio -1-1   Frequency / Hz 1-150
$ \Delta K$ / MPam$ ^{1/2}$ 2.5-142   $ \frac{da}{dN}$ / mm cycle$ ^{-1}$ 9.82$ \times$10$ ^{-10}$-4.86$ \times$10$ ^{-1}$

Table 2: The inputs for the predictions in Figs 5, 6, 7 covering nickel, titanium and aluminium alloys.
Variable Figure number
  5a 5b 5c 5d 5e 5f 6a 6b 7a 7b
Elongation / % 5 15 20 20 27 33 14 8 20 14
0.2% Proof stress / MPa 1020 1172 1113 1113 1076 921 930 524 1172 940
Tensile strength / MPa 1520 1404 1373 1373 1441 1351 970 464 1440 998
Specimen length / mm 72.5 63.5 50.8 31.8 62.5 5 155 155 7 7
Specimen thickness / mm 12.5 25.4 12.7 8.89 25 3 40 40 7 7
Pre-crack length / mm 12.5 18.3 6.4 5.3 17.5 0.4 9 9 0.5 0.5
Stress ratio 0.1 0.1 0.05 0.05 0.5 0.5 -1 0.5 0.1 0.5
Frequency / Hz 40 20 0.667 0.667 20 100 20 20 0.25 100

Figure 1: Distribution of data used to create the model.
\includegraphics[width=0.32\textwidth]{elv.eps} \includegraphics[width=0.32\textwidth]{tens.eps} \includegraphics[width=0.32\textwidth]{profstre.eps} \includegraphics[width=0.32\textwidth]{speclengt.eps} \includegraphics[width=0.32\textwidth]{specwidt.eps} \includegraphics[width=0.32\textwidth]{specpre.eps} \includegraphics[width=0.32\textwidth]{stresrati.eps} \includegraphics[width=0.32\textwidth]{freque1.eps} \includegraphics[width=0.32\textwidth]{logdkda.eps}

Figure 2: Performance of the committee of models on the entire dataset of 12807 experiments.

Figure 3: Perceived significance of the inputs in the committee model. Both the mean significance and the upper and lower limits from the members of the committee are shown.
Figure: Calculations for a bearing steel. The points represent experimental data from [32], whereas the uncertainty range illustrated is calculated.

Figure: Predictions represented by the uncertainty range, and experimental data presented as points, for nickel based superalloys. (a) Udimet 700, data from [33]. (b) Inconel 718 with data dues to [34]. (c,d) Inconel 718, data from [35]. (e) Waspaloy, data from [36]. (f) Waspaloy, data from [37].
[]\includegraphics[width=0.40\textwidth]{100.eps} []\includegraphics[width=0.40\textwidth]{101.eps} []\includegraphics[width=0.40\textwidth]{102.eps} []\includegraphics[width=0.42\textwidth]{103.eps} []\includegraphics[width=0.40\textwidth]{105.eps} []\includegraphics[width=0.40\textwidth]{106.eps}

Figure: Calculations (uncertainty ranges) for titanium and aluminium alloys compared with measurements (points) due to [38,39].
[]\includegraphics[width=0.42\textwidth]{TiAlV.eps} []\includegraphics[width=0.42\textwidth]{7075.eps}

Figure 7: Blind predictions for Ti 6/4 forging material.
[]\includegraphics[width=0.42\textwidth]{bt11.eps} []\includegraphics[width=0.42\textwidth]{bt22.eps}

next up previous
Next: About this document ... Up: Fatigue Crack Growth Rate Previous: Acknowledgements