Next: About this document ...
Up: Fatigue Crack Growth Rate
Previous: Acknowledgements
- 1
-
P. C. Paris, M. P. Gomez, and W. E. Anderson.
A rational analytic theory of fatigue life.
The Trend in Engineering, 13:9-14, 1961.
- 2
-
P. C. Paris and F. Erdogan.
A critical analysis of crack propagation laws.
J. Basic Eng.(Trans. ASME), 85:528-534, 1963.
- 3
-
P. C. Paris.
The fracture mechanics approach to fatigue.
Proc. 10th Sagamore Conf, pages 107-132, 1965.
- 4
-
R. O. Ritchie.
Near threshold fatigue-crack propagation in steels.
International Metals Reviews, 4:205-230, 1979.
- 5
-
L. N. McCartney and P. M. Cooper.
A new method of analysing fatigue crack propagation data.
Engineering Fracture Mechanics, 9:273-290, 1974.
- 6
-
K. H. Schwalbe.
Comparison of several fatigue crack propagation laws with
experimental results.
Engineering Fracture Mechanics, 6:325-341, 1974.
- 7
-
W. Elber.
The significance of fatigue crack closure.
ASTM STP, 486:230-242, 1971.
- 8
-
T. V. Duggan.
A theory for fatigue crack propagation.
Engineering Fracture Mechanics, 9:735-747, 1977.
- 9
-
D. V. Ramsamooj and T. A. Shugar.
Model prediction of fatigue crack propagation in metal alloys in
laboratory air.
International Journal of Fatigue, 23:S287-S300, 2001.
- 10
-
S. Shademan, A. B. O. Soboyejo, J. F. Knott, and W. O. Soboyejo.
Physically based model for the prediction of long fatigue crack
growth in Ti-6Al-4V.
Materials Science and Engineering A, 315:1-10, 2001.
- 11
-
H. K. D. H. Bhadeshia.
Neural networks in materials science.
ISIJ International, 39:966-979, 1999.
- 12
-
M. D. Mathew, D. W. Kim, and W. S. Ryu.
A neural network model to predict low cycle fatigue life of
nitrogen-alloyed 316l stainless steel.
Materials Science and Engineering A, 474:247-253, 2008.
- 13
-
D. J. C. MacKay.
Practical bayesian framework of backpropagation networks.
Neural Computation, 4:448-472, 1992.
- 14
-
D. J. C. MacKay.
Bayesian interpolation.
Neural Computation, 4:415-447, 1992.
- 15
-
D. J. C. MacKay.
Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.
- 16
-
H. K. D. H. Bhadeshia.
Neural networks and information in materials science.
Statistical Analysis and Data Mining, 1:296-305, 2009.
- 17
-
T. Goswami.
Prediction of low cycle fatigue lives of low alloy steels.
ISIJ International, 36:354-360, 1996.
- 18
-
S. B. Singh and H. K. D. H. Bhadeshia.
Estimation of bainite plate-thickness in low-alloy steels.
Materials Science and Engineering A, A245:72-79, 1998.
- 19
-
J. M. Vitek, Y. S. Iskander, and E. M. Oblow.
Improved ferrite number prediction in stainless steel arc welds using
artificial neural networks.
Welding Journal, Research Supplement, 79:33s-50s, 2000.
- 20
-
J. Tenner, D. A. Linken, P. F. Morris, and T. J. Bailey.
Prediction of mechanical properties in steel heat treatment process
using neural networks.
Ironmaking and Steelmaking, 28:15-22, 2001.
- 21
-
D. Dunne, H. Tsuei, and Z. Sterjovski.
Artificial neural networks for modelling of the impact toughness of
steel.
ISIJ International, 44:1599-1607, 2004.
- 22
-
Z. Guo and W. Sha.
Modelling the correlation between processing parameters and
properties of maraging steels using artificial neural network.
Computational Materials Science, 29:12-28, 2004.
- 23
-
M. Mukherjee, S. B. Singh, and O. N. Mohanty.
Neural network analysis of strain induced transformation behaviour of
retained austenite in TRIP-aided steels.
Materials Science and Engineering A, 434A:237-245, 2006.
- 24
-
H. K. D. H. Bhadeshia, R. C. Dimitriu, S. Forsik, J. H. Pak, and J. H. Ryu.
On the performance of neural networks in materials science.
Materials Science and Technology, 25:504-510, 2009.
- 25
-
M. Jono, Y. Iono, A. Ohta, S. Kawai, H. Kobayashi, K. Komai, T. Sakai,
K. Hirakawa, and K. Mori.
Data book on fatigue crack growth rates of metalic materials, vol. 1
and vol. 2.
Technical report, The Society of Materials Science, Japan, Kyoto,
Japan, 1983.
- 26
-
J.-H. Pak, J.-H. Jang, H. K. D. H. Bhadeshia, and L. Karlsson.
Optimisation of neural network for Charpy toughness of steel welds.
Materials and Manufacturing Processes, 24:16-21, 2009.
- 27
-
J. H. Ryu and H. K. D. H. Bhadeshia.
Contribution of microalloying to the strength of hot-rolled steels.
Materials and Manufacturing Processes, 24:1-7, 2009.
- 28
-
M. S. Joo, J. H. Ryu, and H. K. D. H. Bhadeshia.
Domains of steels with identical properties.
Materials and Manufacturing Processes, 24:53-58, 2009.
- 29
-
D. J. C. MacKay.
Bayesian non-linear modelling for the energy prediction competition.
ASHRAE Transactions, 100:1053-1062, 1994.
- 30
-
J. R. Griffiths and C. E. Richards.
Fatigue testing.
Mater. Sci. Eng R, 11:305-315, 1973.
- 31
-
D. Broek and J. Schijve.
Fatigue crack growth; effect of sheet thickness.
Aircraft Engineering, 38:31-33, 1966.
- 32
-
A. Otsuka, Y. Fujii, and K. Maeda.
A new testing method to obtain mode 2 fatigue crack growth
characteristics of hard materials.
Fatigue Fract Engng Mater Struct, 27:203-212, 2004.
- 33
-
M. A. Hicks and J. E. King.
Temperature effects on fatigue tresholds and structure sensitive
crack growth in a nickel-base superalloy.
Int. J Fatigue, 5:67-74, 1983.
- 34
-
R. L. Tobler.
Low temperature effects on the fracture behaviour of a nickel base
superalloy.
Cryogenics, 1:669-674, 1976.
- 35
-
L. A. James and W. J. Mills.
Effect of heat treatment and heat to heat variations in the fatigue
crack growth response of alloy 718.
Engineering Fracture Mechanics, 22(5):797-817, 1985.
- 36
-
J. Telesman and L. J. Ghosn.
The unusual near-treshold fatigue crack growth behaviour of a single
crystal superalloy and the resolved shear stress as the crack driving force.
Engineering Fracture Mechanics, 34(5/6):1183-1196, 1989.
- 37
-
J. C. Healy, L. Grabowski, and C. J. Beevers.
Short fatigue crack growth in a nickel base superalloy at room and
elevated temperature.
Int J. Fatigue, 2:1183-1196, 1991.
- 38
-
S. S. Tschegg.
Fatigue crack growth and thresholds at ultrasonic frequencies.
Int J. Fatigue, 28:1456-1464, 2006.
- 39
-
T. L. MacKay.
Fatigue crack propagation rate at low
K of two aluminium
sheet alloys, 2024-T3 and 7075-T6.
Engineering Fracture Mechanics, 11:753-761, 1979.
- 40
-
R. Dimitriu and H. K. D. H. Bhadeshia.
Hot-strength of creep-resistant ferritic steels and relationship to
creep-rupture data.
Materials Science and Technology, 23:1127-1131, 2007.
- 41
-
S. Chatterjee and H. K. D. H. Bhadeshia.
Stretch-flangeability of strong multiphase steels.
Materials Science and Technology, 23:606-609, 2007.
.
Table 1:
Chemical composition range (wt%) of the steels studied. The lower half of the table shows the variables actually included in the analysis.
Element |
Range |
|
Element |
Range |
Carbon |
0.1-0.8 |
|
Copper |
0-0.2 |
Chromium |
0-5 |
|
Manganese |
0-2 |
Molybdenum |
0-2 |
|
Nickel |
0-2 |
Silicon |
0-2 |
|
|
|
Variable |
Range |
|
Variable |
Range |
Elongation / % |
0.2 -61.8 |
|
0.2% Proof stress / MPa |
122-1735 |
Tensile strength / MPa |
270-2206 |
|
Specimen length / mm |
13-260 |
Specimen thickness / mm |
1.2-134 |
|
Pre-crack length / mm |
1-52 |
Stress ratio |
-1-1 |
|
Frequency / Hz |
1-150 |
/ MPam |
2.5-142 |
|
/ mm cycle |
9.82 10 -4.86 10 |
|
|
|
|
|
Table 2:
The inputs for the predictions in Figs 5, 6, 7 covering nickel, titanium and aluminium alloys.
Variable |
Figure number |
|
5a |
5b |
5c |
5d |
5e |
5f |
6a |
6b |
7a |
7b |
Elongation / % |
5 |
15 |
20 |
20 |
27 |
33 |
14 |
8 |
20 |
14 |
0.2% Proof stress / MPa |
1020 |
1172 |
1113 |
1113 |
1076 |
921 |
930 |
524 |
1172 |
940 |
Tensile strength / MPa |
1520 |
1404 |
1373 |
1373 |
1441 |
1351 |
970 |
464 |
1440 |
998 |
Specimen length / mm |
72.5 |
63.5 |
50.8 |
31.8 |
62.5 |
5 |
155 |
155 |
7 |
7 |
Specimen thickness / mm |
12.5 |
25.4 |
12.7 |
8.89 |
25 |
3 |
40 |
40 |
7 |
7 |
Pre-crack length / mm |
12.5 |
18.3 |
6.4 |
5.3 |
17.5 |
0.4 |
9 |
9 |
0.5 |
0.5 |
Stress ratio |
0.1 |
0.1 |
0.05 |
0.05 |
0.5 |
0.5 |
-1 |
0.5 |
0.1 |
0.5 |
Frequency / Hz |
40 |
20 |
0.667 |
0.667 |
20 |
100 |
20 |
20 |
0.25 |
100 |
|
|
|
|
|
|
|
|
|
|
|
Figure 1:
Distribution of data used to create the model.
|
Figure 2:
Performance of the committee of models on the entire dataset of 12807 experiments.
|
Figure 3:
Perceived significance of the inputs in the committee model. Both the mean significance and the upper and lower limits from the members of the committee are shown.
|
Figure:
Calculations for a bearing steel. The points represent experimental data from [32], whereas the uncertainty range illustrated is calculated.
|
Figure:
Predictions represented by the uncertainty range, and experimental data presented as points, for nickel based superalloys. (a) Udimet 700, data from [33]. (b) Inconel 718 with data dues to [34]. (c,d) Inconel 718, data from [35]. (e) Waspaloy, data from [36]. (f) Waspaloy, data from [37].
|
Figure:
Calculations (uncertainty ranges) for titanium and aluminium alloys compared with measurements (points) due to [38,39].
[] ![\includegraphics[width=0.42\textwidth]{TiAlV.eps}](img48.png)
[]
|
Figure 7:
Blind predictions for Ti 6/4 forging material.
[] ![\includegraphics[width=0.42\textwidth]{bt11.eps}](img50.png)
[]
|
Next: About this document ...
Up: Fatigue Crack Growth Rate
Previous: Acknowledgements
2010-01-02