Neural Network Analysis of Steel Plate Processing

S. B. Singh, H. K. D. H. Bhadeshia, D. J. C. MacKay, H. Carey and I. Martin


The process of rolling is very complicated and the number of parameters which determines the final properties can be very large. It is extremely difficult therefore to develop a physical model for predicting various properties like yield and tensile strengths. In the present work, a neural network technique which can recognise complex relationships was employed to develop a quantitative method for estimating the yeild and tensile strengths as a function of steel composition and rolling parameters. The model was tested extensively to confirm that the predictions are reasonable in the context of metallurgical principles and other data published in the literature.

Ironmaking and Steelmaking, Vol. 25, 1998, 355-365.

PDF file

Postscript file

TEX file

Review of Neural Networks in Materials Science

4th edition
4th edition, 2017
3rd edition
Free download
1st edition
Free download

PT Group Home Materials Algorithms