Prediction of martensite start temperature

M. J. Peet


Methods have been evaluated for the prediction of the martensite–start temperature as a function of composition. Linear regression models have been improved by applying the concept of a committee borrowed from more sophisticated empirical techniques. Neural networks and thermodynamic models are tested, and a hybrid neural network model is developed using the thermodynamic model. The performance of the models is compared by different methods of assessment. The thermodynamic model performance was the best when tested within a typical range of the input–space. Bayesian neural network possess the advantage that the predictions are naturally accompanied by a measure of the uncertainty. It is demonstrated that combining the thermodynamic model with neural network can combine the advantages of the two methods.

Materials Science and Technology 31 (2015) 1370-1375.

Download paper


Empirical Model (2014)

Previous Neural Network Model

martensite start temperature, steels

Related papers

Hydrogen TWIP Hydrogen in cracks Stainless nanofluid Aerogengine bearings 3rd edition
Ternary pearlite TRIP multipass welds Phosphorus Shear instabilities
Surface displacements Stressed duplex Superbainite bearing? Percolation

PT Group Home Materials Algorithms