Mössbauer Spectroscopy of Low Temperature Bainite

P. Bruna, T. Pradell, D. Crespo, C. Garcia-Mateo and H. K. D. H. Bhadeshia


Low-temperature bainite, obtained by the transformation of austenite at temperatures as low as 200°C for times as large as several days, has been reported to have extraordinary mechanical properties including the highest reported hardness of any bainitic steel. The unusual properties are a consequence of the fine scale of the microstructure, which contains bainite plates with thickness in the range 20-40 nm. The microstructure also contains carbon-enriched retained austenite which contributes to the properties via a number of mechanisms. In this work, the microstructure of a high carbon bainitic steel with Si to avoid cementite precipitation and Co to accelerate the transformation has been studied using Mössbauer spectroscopy for a series of samples transformed isothermally at 200°C for time periods of 26, 34 and 96 hours. The total austenite content is almost identical (~13 wt%) for these samples although the carbon concentrations of the phases differ as a function of transformation time. The austenite increases its carbon content from 5.4 atomic % after 26 h transformation to 6.3 at.% after 96 h, while the final bainitic phase retains about 2.2 at.% of C. These results are consistent with data obtained using atom probe tomography for samples transformed isothermally for 12 days.

Industrial Applications of the Mössbauer Effect, eds M. Garcia, J. F. Marco, F. Plazaola, American Insitute of Physics, 2005, pp. 338-343

Download PDF file of paper.

Related Papers

Superalloys Titanium Bainite Martensite Widmanstätten ferrite
Cast iron Welding Allotriomorphic ferrite Movies Slides
Neural Networks Creep Mechanicallly Alloyed Theses Retained Austenite

PT Group Home Materials Algorithms Any Valid CSS!